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Abstract - An analytical study of steady laminar, filmwise condensation of a saturated vapor in forced flow in 
a vertical tube has been conducted for the case when the vapor velocity profile at the tube inlet is fully 
developed and the tube wall temperature is maintained constant. 

Equations and boundary conditions governing the condensation process have been examined in detail in 
order to determine relevant parameters of the problem. For a wide range of conditions of practical interest it 
is found that the condensation process is governed by five parameters. These are the ratio of vapor Froude to 
Reynolds number, Buoyancy number, vapor to liquid viscosity ratio, liquid Prandtl number and Subcooling 
number. 

A numerical solution of the resulting set of equations shows considerable differences in hydrodynamics 
and heat transfer with variations in these parameters. Comparison of the results with Nusselt’s analytic 
solution ofconstant interphase shear is also made and it is found that at high pressures, high Prandtl numbers 
and high ratios of Froude to Reynolds numbers, his analytic solution underpredicts the condensation length 
and film thickness and overpredicts the interphase mass and heat transfer. Significant disparities at low 
Prandtl numbers are found between analytic and numerical solutions for heat-transfer results as well as the 
hydrodynamic results. These disparities are a consequence of neglecting inertia terms in the liquid and vapor 

equations of motion in the analytic model and their inclusion in the model presented in this work. 

NOMENCLATURE 

Bo, buoyancy number, 1 - pdp,; 

CP, specific heat at constant pressure: 

Q 
iFrot - Bo) 

ReoP 
WroPrt); 

E, Eckert number, U$[Cp,(T,, - T,,,)] ; 
&,...rEzu functions defined in [14] ; 
f,- 
F, 
Fro, 
0, 
G, 
Ga, 
h, 
h 

$2, 
k, 
L, 
L*, 

vector defined by equation (55); 
function defined in [ 143 ; 
Froude number, U$(2r,g); 
gravitational constant ; 
function defined in [14] ; 
Galilei number, gt3/y: ; 
heat-transfer coefficient; 
enthalpy of evaporation; 
functions defined in [14] ; 
thermal conductivity ; 
condensation length ; 
non-dimensional condensation length, 
W(Pr,rS u0 ) ; 
total mass flow-rate in the tube; 
liquid mass flow-rate; 
non-dimensional liquid mass flow-rate, 
wi,/rir ; 
bcal Nusselt number, Zr,h/k, ; 

1 

s 

2. 
average Nusselt number, zt Nu dz* ; 

0 

static pressure ; 
non-dimensional static pressure, 
(P - PIMP1 G); 
Prandtl number, p,Cp,/k, ; 

m, 
ml9 
ni:, 

NW 

Nu, 

P, p, 
P** 

Pr,, 

% 
r, 
r* , 
r0, 

Reo, 

S r: 
:;, 
uo. 

4 

v*, 
v, 
3: 

Yl, 

Yh 

Y3, 

f;, 

heat flux vector; 
radial coordinate; 
nondimensional radial coordinate, r/r0 ; 
inner tube radius; 
Reynolds number of vapor at the tube inlet, 

fWO2r0lk ; 

subcooling number, Cp,(T, - T,)/h,,; 
temperature ; 
axial velocity; 
nondimensional axial velocity, u/U, ; 
average flow velocity of vapor entering the 
tube; 
radial velocity; 

non-dimensional radial velocity, Pr, 3 ; 

velocity vector ; 
YI 

vemr Cv,, y2, ysJT; 
nondimensional liquid film thickness, q ; 
nondimensional derivative of the con- 
densate flow-rate, dnif/dz* ; 
non-dimensional derivative of the conde- 
nsate flow-rate, dr$/dz* ; 
axial coordinate; 
nondimensional axial coordinate, 
zMPr,r6 Uo). 

Greek symbols 

A, thickness of the vapor core; 

49 dA/dz ; 
49 nondimensional vapor core thickness, 

A/r, ; 
Il+ dq/dz* ; 
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8, non-dimensional temperature ratio, 

(T - TW)/(T,,, - T,); 
P* dynamic voscosity ; 

P. viscosity ratio, j+/p,; 

1’7 kinematic viscosity ; 

P. mass density ; 
I, stress tensor ; 

?ij9 shear stress acting on the surface i and in 
the direction j; 

49 angle in Fig. 1; 

0, dissipation function. 

Subscripts 

1; film; 

9, vapor ; 
1, liquid; 

0, at the tube inlet; 

R, reference ; 
St, saturation state; 

w, wall of the tube. 

Superscripts 

; 
vapor ; 
liquid ; 

T, transpose. 

INTRODUCXON 

THE COhYDENSATION of pure vapors in vertical tubes has 
been studied extensively [l-lo]. These experimental 
and analytical studies have been concerned primarily 
with wetting fluids which condense filmwise and with 
the tube surface kept at a uniform temperature. The 
vapor temperature at the tube. inlet is considered to be 
saturated or superheated and the vapor velocity 
profile as either fully developed or uniform. 

The complexity of thermo-hydrodynamic coupling 
of the liquid and vapor phases has resulted in a myriad 
of correlations which attempt to present heat-transfer 
and pressure drop results in various regimes of the tube 
condensation process. For most part these corre- 
lations have the liquid-vapor interphase shear stress 
determined from the adiabatic co-current 
liquid-vapor flow results. This is evident in the 
analyses of Carpenter and Colbum [3], Dukler [4] 
and others. No analytic treatment exists which is free 
from a semi-empirical approach and which is con- 
sistent with the process of condensation in the vertical 
tube. This applies equally well to all regimes of flow. 

It is the purpose of this paper to critically examine 
the governing equations describing the filmwise con- 
densation in a vertical tube under laminar 
liquid-vapor flow, to determine a set of parameters 
describing this condensation process and to present an 
approximate solution to a consistent set of equations 
in terms of these parameters for both hydrodynamics 
and heat transfer. 

PROBLEM UNDER INVESTIGATION AND 
GOVERNING EQUATIONS 

Steady, laminar, filmwise condensation of a pure 

Liquid film 

FIG. 1. Filmwise condensation in a vertical tube. 

vapor in a vertical tube with downflow is considered. 
The vapor entering the tube is saturated and its 
velocity profile is fully developed. Also, the tube 
surface temperature is taken to be constant. Figure 1 
illustrates this condensation process schematically and 
defines the nomenclature in the cylindrical coordinate 
system for the problem. 

The problem is formulated utilizing classical field 
theory [ 111 and the fluid is linear Stokesian. Further- 
more, the following assumptions are made to simplify 
the formulation without compromising the essential 
features. 

1. 
2. 
3. 

4. 
5. 
6. 

Liquid and vapor phases are incompressible. 
Fluid properties are constant. 
Absence of interfacial line fluxes (such as surface 
tension). 
No interfacial resistance to heat transfer. 
The vapor core is saturated. 
Saturation temperature difference between any 
point in the vapor core and the inlet to the tube is 
much less than the difference in temperatures 
between vapor at the tube inlet and the tube 
surface. 

Conservation equations for liquid and vapor phases 

i a 
; ~03,) + 2 = 0 (1) 

( au, au, 
Pm vq-+ u*x 

> 
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P&P, ( aT, dT, 
4 -g + 4x 

> 

T, = T&P,). (5) 
In equations (l)-(3) m = I denotes the liquid phase and 
m = g denotes the vapor phase. 

Liquid-vapor interface equations 

(PIVI * P,V,), = A .i, = 0 (6) 

[PgV,(v, * i;,, - 79 . ;,I, = ‘3 - [P,V,(v, . “*“I 

- t1 .fiplri;A + (PO - PJ,=an^, = 0 (7) 

[ ( P#V, 
v’ - v: 

hl, + + 
> 

- q, + r, . V, - r# * V, 
I 

. r?, = 0 (8) 
=d 

No-slip conditions at the interface 

Taking the scalar product of momentum equation 
(7) with the unit tangent vector at the interface and 
utilizing the interface conservation of mass equation 
(6) results in 

{@#V, * QW, . t - v, . t) 

- [(T, . 6,) . t^ - (?, . fi#) . q,,:. * = 0. (9) 

This result shows that no-slip of tangential velocities at 
the interface implies no-slip of tangential shears and 
vice versa. These conditions are justified separately 
within the framework of classical field theory. 
Therefore 

(V, - V,),,,.t^= 0 

or us -u, - (u, - “#)$ 
1 

=o (10) 
=A 

and 

[71,U - Ai) + 4(7:, - 73 

- 731 - A:) - 4(f - 7:x)3,4 = 0. (11) 

Constitutive equations 

J (12) 

P* = P* = 7g = 7;+ E 0 

&= - k,VT,. 

Boundary conditions 

u&z = 0,r) = 214~ 1 - rf 
( > 6 

, 

u& = 0, r) = 0, 
au,tr, r = 0) 

dr 
= 0 (13a,b,c) 

v&z,r = 0) = 0, u&z = &r) = 0, 

U&Z = L,r) = 0 (14a,b,c) 

u,(z = 0,r) = 0, u,(z = 0,r) = 0, 

u,(z,r = ro) = 0 (15a,b,c) 

u,(z, r = ro) = 0, z(z=&r)=O, 

u,(z = L, r) = 0 (16a, b, c) 

T,(z,r = ro) = T,, 

T,(z,r = A) = T,,(A) (17a, b) 

T,(z = 0, r) = T,,(r, z = 0), 

aT,(z = L,r) 

az 
= 0 (18a,b) 

p(z = 0,r) = po. (19) 

Parameters of the condensation process and non- 
dimensional equations 

For purposes of determining a set of dimensionless 
parameters describing the present condensation prob- 
lem, reference quantities for dependent and inde- 
pendent variables are introduced as follows. 

r*-= 1 Z 
z*=-, 4 01 

rR ’ 

al:=--, uf = - 

ZR %R vIR 

%I % PI - PA lie*=--, up*=--, p:=- 
%R %R PHI 

* Po-PA T, - TA T - TA 
Pa - 

PoR 
, e,=7, 

R 

eg=-+--. 
R 

Substituting the new variables into equations (l)-( 19) 
yields a non-dimensional set of equations with para- 
meters expressed in terms of original parameters and 
the reference quantities. To determine expressions for 
the reference quantities these equations are first exam- 
ined for the number of independent parameters ex- 
pressable in terms of reference quantities and fluid 
properties. This procedure yields an overdetermined 
system where the number of parameters exceeds the 
number of reference quantities and consequently pre- 
cludes the reduction in the number of independent 
variables describing the process. The determination of 
reference quantities, described in detail in [ 151, results 
in the following choices : 

&J0 
rR = ro, zR = Pr,-, UIR = UgR = uo, 

YI 
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Yl 
UIR = "gR = Pr,r,’ PIR = PgR = PIu& PA = PO, 

TA = T, T, = T”,(O) - T,. 

It is noted that the appearance of dynamic pressure as 
the reference pressure is consistent with the incom- 
pressible flow assumption. 

In dimensionless form the governing equations are 
described by seven independent parameters. These are 
the liquid Prandtl number Pr,, subcooling number So, 
buoyancy number E,, vapor to liquid viscosity ratio 
P*, Eckert number E, ratio of Froude to Reynolds 
number Fro/Reo and the parameter 

4Fr, (1 - Bo) - (2FroPr,). 
Reo P* i 

These equations are presented below. 

Note that in these equations 

ifm=/(liquid)thenn=landj=l 

ifm=g(vapor)thenn=l-Boandj= 

A. Field equations 

P*. 

m 

Normal component of the interface momentum 
equation 

I%: - u:rl,.)($ - 0:) + @; - Pa - [TX. 

- 7:: + ?fz.($p - fp, *=m,*_4 = 0. (28) 

Conservation of energy at the interface 

Where 

rs? = 2jDfPr, g 

rhrn = ZjD’Pr,: 

7*m ip = 2jD’Pr,$ 

au: au: ap: nPr, 
n v’:dr++L(:dz+ = -G+4Fro(l - Bo) 

Re& 

+ EPr@*’ (23) 

e,= 1. (24) 

B. Interface and constitutive equations 

Conservation of mass at the interface 

I(1 - Bo)($ - “:‘tr) - (0: - u:%4L, = 0. 

(25) 

Tangential velocity matching at the interface (no-slip 
condition) 

(u; - u: - Dzqi(u: - I$)}+_,, = 0. (26) 

Tangential component of the interface momentum 
equation 

(29) 

C. Boundary conditions 

qz* = O,r*) = 2(1 - r*‘), v:(z* = O,r+) = 0, 

aqz*,r+ = 0) 

dr* = 

o 

u:(z*,r* = 0) = 0, u:(z* = L*,r*) = 0, 

u:(z* = L*,r*) = 0 

Uf(Z’ =O,r*)=O, uf(z*=O,r+)=O, 

$(z*,r* = 1) = 0 

uf(z+,r* = 1) = 0, 
au:fz* = L*,r*) 

az* = 
0, 

I$(z’ = L*,r+) = 0 

B,(z+,r* = 1) 10, B,(z*,r* = q) = 1 

w* = O,r*) = 1, 
ae,tz+ =L+,r*) o 

az+ = 

P*(z* = 0, r*) = 0. 

(3Oa, b, c) 

(3kb,c) 

(32a,b,c) 

Wa, b, c) 

(34a.b) 

(35,a.b) 

(36) 

l[he seven parameters which appear in foregoing 
equations define an eliptic problem and the solution in 
full generality is prohibitive. These equations will now 
be simolified. 
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SIMPLIFIED SET OF GOVERNING EQUATIONS 

The parameters which appear in equations (20)-(36) 
are first evaluated for operating pressure levels, satu- 
ration to wall temperature differences and the tube 
inlet vapor velocities which are representative of 
anticipated applications. Table 1 shows the range for a 
number of substances of interest. 

It is observed that in the range of practical interest 
the Eckert number E is very small, signifying the 
relative unimportance of the viscous dissipation term 
in the energy equation (23) and kinetic energy and 
viscous workrate terms in the energy interface qu- 
ation (29). Another parameter which is very small for 
wide range of conditions, except for liquid metals with 
low vapor velocities, is D. Neglecting terms containing 
this parameter is theoretically much less justified than 
neglecting terms which are multiplied by the Eckert 
number. The reason for this is that in the former case 
the elliptic equations are reduced to parabolic qua- 
tions and in turn some boundary conditions are 
ignored; e.g. equations (31b,c), (33b,c) and (35b). 

If the eliptic problem continuously depends on the 
parameter D then the solution of the parabolic prob 
lem, which is absent of D, will be the same as the 
corresponding solution to the eliptic problem in the 
limit as D 4 0. Assuming the validity of foregoing 
statement, a simplified set of equations can be written 
for small values of D. Small Eckert number approxi- 
mation is also taken into consideration. 

A. Field equations 

i a 
;r F (r+u:) + g = 0 

ap: o 
-= 

ar* 

{ 
au: api 

n u$j-++l+ I M 
=-az* 

+ 4Fr,:PL B,) +jPr,f &(r*$) (39) 
_. _. 

Reap* 

ae, ae, I a de, 
tt:g+u:dr+=;r -g ( > r+drL 

e,= I. 

B. Interface equations 

((1 - B,)($ - u:tlp) - (0: - u:rl,.)L, = 0 

{u: - u?L, = 0 

{Pp* - P:Llj = 0 

w 

(41) 

(42) 

(43) 

(44) 

(45) 

(4) 

C. Boundary conditions 

u,‘(z* = 0, r*) = 2(1 - r*‘), u,‘(r* = O,r*) = 0, 

&&7*, r* = 0) 

az* = 0 (47a,b,c) 

u,L(z*, r* = 0) = 0, u:(z* = O,r*) = 0, 

u:(z+ = O,r*) = 0 (48a,b,c) 

u:(z*,r* = l)=O, $(z*,r* = 1)-O, 

e,(z+,r+ = 1) = 0 (49a, b,c) 

e,(z*, r+ = q) = 1, e,fz* = O,r+) = 1, 

PV = O,r*) = 0. (SOa,b,c) 

Equations (38) and (45) imply no radial variation in 
pressure and consequently, in the presentation to 
follow, this dependence will be omitted. The simplified 
set of equations also contain a number of the “usual” 
equations which are often utilized in the condensation 
heat transfer. These equations are (43), (44) and (46). 

APPROXIMATE SOLUTION OF THE SlMPLlFlED 
EQUATIONS 

Reduction to ordinary differential equations 

Solution of the parabolic set of equations (37~(50) 
is possible through a direct numerical parabolic 
scheme. However, in an attempt to further simplify the 
computational requirements an integral analysis with 
assumption of parabolic axial velocity profiles in the 
vapor and liquid, and a parabolic temperature profik 
in the liquid is introduced. This reduces the governing 
equation-set to a pair of ordinary differential 
equations. 

The functional forms 

u: = a, + b,r* + c,r*‘, u: 5: o2 + b2r* + c2r*’ 

and 8, = 4s + b# + car*’ (51a, b,c) 

are introduced for the liquid and vapor velocity 
profiles and liquid temperature profile. They contain 
nine variable coefficients which can be expressed in 
terms of boundary conditions and interface relations. 
Closure conditions for mass flow-rates of each phase 
are also introduced, i.e. 

2 l 
$5 - 

s 

rl 

I-B, ,, 
r*u: dr* , ril;=2 

s 
Pup’ dr* 

0 

W.a, b) 

Reduction of the partial differential equations leading 
to ordinary differential equations can only be outlined 
here. Details can be found in [15]. 

Using the continuity equations, equation (37), the 
axial momentum equation for the liquid is integrated 
across the liquid film and the vapor axial momentum 
equation is integrated across the vapor core. Radial 
integration is performed by utilizing the assumed form 
of velocity profiles and the pressure gradient is elim- 
inated between these two equations. The result is a first 
order ordinary differential equation describing the 
liquid film thickness and condensate mass flow-rate. 
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dlt 5(3 + rt)(l - +)E,Eio 
- 
dz* 

ti:z + ti: 
24rl’EiErs 

+ 
5~*(1 - ~)~(l + rt)(3 + 10~ + 3~~)l,E,Ei, 

24(1 - Bo)$‘E,Ei3 II 

(5 + lltt)(l - rlY2& : dk: 

dz+ &E,J 

x litL + 5(I - t12)(3 + 5tl)E,iE,, 
I 

6q2(5 + llrt)l2E, 

PC = 

{ 
4 

EM - B0) 

J&P* 1 

X c 5(3 + 5~)~(1 - ~)“(l + q)B,E: + 5(3 + 5~) 

192(1 - B,)2EIE,3 2 

Fro &EB P*U - s)~U + rl)’ 
x-- 

ReoP ElE13 (1 - Bo)q4E8 - ” Ill ’ 

(53) 

The non-dimensional functions (E’s and I’s) in the 
above equation depend on q, B, and P*, and are listed 
in [15]. 

Integrating the energy equation (40) across the 
liquid film and utilizing the assumed liquid velocity 
and temperature profiles results in a simplified govem- 
ing heat transfer equation. 

d2ti: 1 

dz+2 + fi*E 2JP(l - r1)2(l + a) 
I I8 - 3(1 - B,)rt2(3 + 4~) 

x [E,8($y+4(1 ‘Bo)(g 
4o(I + rt)(3 + 5tl)E, 

x (1 - rt)(3 + 4tl) 

~(5 + 31)E,, 

5(1 + t1)(3 + 5rl)E~ 

so 64or1(3 + 5W7 

16(1 - EM2 (1 - ~)~(3 + 4~) 

2c(*(l - ~)(6 + 151 + 7~~) 

3(1 - B&3(3 + 4q)2 

so + 
x (1 - ni:Ell} + 

4(I - Bo) (I ft Bo) 

X 

+4(1 
8So (15 + 18~ + 23~‘) 

- Bo) (I - r1)2(3 + 4t1)2 

x P$E,~ - 
2V*(l - tl)2(1 + 5tl + 2r/)2 

3(I - Bo)V3(5 + 3rl) 

x I (5 + 3r1)(9 + 30~ + 17r12)E,, 
(3 + 5n)(15 + 18~ + 23~~) 

dni,l (9 + 3On + 17r12)E,, 

dz* rl(l - r1)(3 + 4rt)(3 + 5rl) 
2PV - rl)l(l + rt) x ti:E,, - 

B&+(3 
111 = 0. 

3(1 - + 4n) 

(54) 

It is convenient to rewrite the foregoing equations as 
a system orfirst order differential equations. By letting 

Yl = n, y, = ti: and y3 = dri$/dz+ it follows that 

dy, 
dz’ = Fh,y,,y3). 

dy, 
F = Y3, 

dy, 
- = Gh, y21 Y3) 
dz+ 

(55a) 

where functions F and G are listed in [15]. This 
equation-set can also be written in a compact vector 
form as 

& = f(y). Wb) 

Solution ofquations (55) requires initial conditions 
whichcanbesetatz* =Owherey, = landy, =O.As 
to the value of y, at z* = 0 it is not clear nor necessary 
to know for even if it is bounded the conditions for the 
existence and uniqueness of a solution to the set (55) 
are violated at this point. This violation is, perhaps, not 
surprising for discontinuity in tube wall temperature 
has been built into the model as well as parabolic form 
of equations utilized in the description of the conden- 
sation process. 

For 0 < z$ 5 z* I a and prescribed initial value 
vector y(z$), f is continuous with continuous first 
partial derivatives (see [15]). This, then, fulfils the 
conditions for the existence and uniqueness theorem 
[13] of ordinary differential equations and theorem 
[13] on the continuous dependence on the initial data. 
The problem is thus “well-posed” and perhaps amen- 
able to the numerical computation. 

The conclusion on the well-posedness of the initial 
value problem (55) away from z* = 0 rests upon the 
premise that initial values at z; > 0 can be specified. 
This is unfortunate for a solution in zo+ = 0 neigh- 
borhood is rquired to start the numerical com- 
putation and which is consistent with the boundary 
conditions of the present problem. 

In 1916 Nusselt [I] obtained a closed form solution 
of the condensation process on a vertical surface by 
essentially ignoring thermohydrodynamic aspects of 
the vapor flow, liquid film inertia and liquid film 
convection. This solution has been slightly revised for 
usefulness in the present context and is reproduced in 
[15] and described by quations (56). The additional 
assumptions introduced by Nusselt should not be 
critical in the region z$ close to zero for here the liquid 
film is very thin and with negligible mass flow. As the 
boundary conditions and structure of highest order 
terms in equations of Nusselt are identical to the ones 
in present investigation it is possible to postulate that 
yi, y2 and y3 from the two theories will overlap as z+ -+ 
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0. This overlap is not necessary and “small” disagree- 
ment will not produce a meaningless solution of 
equations (55) as assured by their well-posedness. 

To summarize, the solution of the governing equa- 
tions (55) will be attempted under initial conditions 

y,(z,“) solved from z$ =$I -yr]J 

1 BO 

4s 4Fro(l - Bo) 
0 

Re0P 

x [i - yi]+ (%a) 

Y&g*) = (1 _ Bo) 
4y*[1 - y1(zo+)]2 

x 

x 
=o I 

y3(zx) = (1 - B,) [l - y,(z:)] 

(56b) 

and with zt “sufficiently small”. The suitable choice of 
zt is discussed below where we discuss the numerical 
method of solving equations (55). 

Structure of the system of governing equations 

Closed form solution of the system of equations (55) 
and initial conditions (56) is not possible and recourse 
to numerical computation is necessary. However, 
before any initial value numerical technique can be 
selected it is necessary that the structure of equations 
this technique is to solve be known. For this purpose a 
detailed study of the structure of governing equations 
was undertaken. This study involved the computation 
of local Jacobian matrix 

/ 

aF aF aF 

ay,dy,ay, \ 
af 

-I 

ay Ool 
\- ) ac ac ac 

aytGdY3 
for different values of initial vectors From this the 
local system response is determined from the charac- 
teristic equations. These computations point out that 
the governing equations (55) describe a process with 
time constants which diverge from each other as the 
liquid film thickness approaches zero. The spread in 
these time constants or the eigenvalucs of the Jacobian 
matrix brings about severe computational require- 
ments which can only be handled by stiff numerical 
methods. 

Numerical procedure 

The numerical procedure chosen to sotve the system 
of equations (55) is described in [ 141. It is a convergent 

procedure which can solve the stiff equations with 
relative ease. However, the improvements [lS] built 
into the computational package have provided a 
reduction in computational time up to an order of 100. 

For a wide range of the five arbitrary parameters the 
numerical procedure performed without difficulty. In 
all computations the initial vector is chosen according 
to equations (56) with an initial q = 0.9996. 

Re~lts 

Numerical computation for yi, yz and ys is carried 
out by specification of five parameters of the problem 
until ali the vapor has condensed. It is recalled that 
these parameters are Fr,lReo, B,, p*, Pr, and So. Once 
rt, rit: and dni:/dz* (or y,, y2 and yz) are determined 
numerically all other information follows readily and 
is described in [ 151. Only the results will be presented 
here. 

High Prandtl number plots of film thickness, conden- 
sate mass 0ow and derivative of condensate mass 
flow (interphase mass transfer) are shown in Figs. 2-4, 
respectively. In these figures all variables plotted are 
normalized to values at L.*, where I.* is the non- 
dimensional length of tube where all the vapor has 
condensed. It is obtainable from the numerical so- 
lution. Also shown for comparison in the figures are 
values of variables obtained from analytic solution 
described by equations (56). Liquid film thickness, 
mass flow-rate, and its derivative at L+ are listed in 
Table 2 from both numerical and analytic solutions. 

From Table 2 it is first observed that the analytic 
solution underestimates both the condensation length 
L* and film thickness 1 - rj(L*). This effect is more 
pronoun~d at higher values of Fro/Reo and higher 
pressures (low go). For case 6 in the table L* is 
underpredicted by 15% and 1 - r~ by loo/, dr$/dz* is 
overpredicted by 240/,. Local behavior of results is also 
similar and can be traced to an assumption in the 
analytic solution where the interphase shear is as- 
sumed to be constant. In the numerical solution 
interphase shear is decreasing along the tube length. 

Two limiting curves are also plotted in Figs. 2-4. 
These are cases corresponding to forced convection 
limit and body force limit in the analytic solution. 
Determination of L*, 1 - q(L+) and dni+fl*)/dz* 
from equations (56) is accomplished by setting lir:(L*) 
= 1 in (56b) and solving for only one real root of 1 - r) 
in this equation. This is then substituted into (56a) and 
(56c) to yield the remaining results. 

Cases corresponding to low liquid Prandti numbers 
are also listed in Table 2 and some of the results 
presented in Fig. 5. The difference between numerical 
and analytical solutions is significant and by no means 
unexpected. This is so since the analytic solution is 
independent of Prandtl number. The Prandtl number 
dependence enters in the present model through the 
inertia terms in the equations of motion which, in the 
case of analytic solution, is not considered. Drawing 
concl~ions from fow Prandtl number plots should 
procede with caution since the simpie form of govern- 
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FIG. 4. Interphase mass-transfer distribution at Pr, = 2. 
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ing equations are less valid at low Froude numbers. I60 , 

Hydrodynamic results 

Significant hydrodynamic results include the distri- 
bution of pressure gradient and pressure along the 
length of tube. It is more convenient, however, to plot 
the results as a function of local vapor quality rather 
than the distance along the tube. Figures 6-9 illustrate 
various hy~~~~ic results plotted in this manner 
for wide range of arbitrary parameters. 

140 

From Figs. 6 and 7 it is seen that the acceleration 
effects are much more pronounced at low Prandtl 
numbers and tend to dominate the overall pressure 
gradient. 

120 

100 

Total pressure gradient and pressure distribution is 
illustrated in Figs. 8 and 9, respectively, for high 
Prandti numbers. Figure 9 is significant for it allows 
the hydrodynamic design of the condenser units for 
wide range of operating conditions. 

80 

I\ 

60 

Heat-transfer results 40 

The values of local and average Nusseft numbers at 
L* are given in Table 2. Figure 10 shows the distri- 
bution of average value of the Nusselt number vs the 
subcooling number. From this figure it is concluded 
that at higb values of Prandtl numbers and over wide 
range in s&cooling numbers of practical interest, the 
analytic solution over-predicts the heat transfer for 
both, high values of the ratio Fr,/Re* and at high 
pressures (low Be). The explanation lies in the thick- 
ness of liquid film which is thinner from the analytic 
solution for the same set of parameters. This in turn 
leads to better heat transfer. 

20 

0 
1.0 08 06 04 0.2 0 

Fto. 6. Comparison of pressure gradients at high FrO/ReO 
and high fr,. 

At low Prandtl numbers the analytic solution 
becomes invalid and Nusselt number deteriorates 
considerably. This reduction is caused by the large 
thermal conductivity of low Prandtl number fluids and 
motion (inertia) of the film. At large subcooiings this 
deterioration is even worse. 

Comparison with the experiment 

Local hydr~y~c and heat-transfer experimen- 
tal data consistent with boundary conditions of this 
work does not exist. The type of data which is 
presented in the literature is in the form of average 
value of heat-transfer coefficient over the entire tube 
condensing surface. Even in such form most data 
presented cannot be compared with this work for the 
reason that the parameters fall outside the range of 
Table 1. At high PrI, low vapor velocity (laminar flow) 
and tow pressure experimental data on the average 
Nusseh number agrees well with the analytic solution 
as is demonstrated in [2,7], and the numerical solution 
is in agreement with the analytic solution in this range 
of parameters. 

6- 

4- 

It is of interest, however, to see that reasonable 
comparison with the experiment can be achieved at 
high Pt, numbers even if vapor Reynolds number Re, 
is very high. This is illustrated in Table 3 where two 
references have been chosen for this purpose. Wall FIG. 7. Comparison of pressure gradients at low Pr,. 

I-ill; 
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SO 

FIG. 10. The effect of various parameters on the average Nusselt number. 

temperature of the tube in [8] is evaluated at L/2 while 
data from both references has been reduced by evaluat- 
ing liquid properties at T, = T, + 0.3( T,, - T,) and 
vapor properties at T,,. From the table it can be seen 
that high values of Fr,/Re,, and So lead to much higher 
values of Nusselt numbers than predicted by theory. At 
high values of parameter Fr,-,/ReO and Prandtl num- 
bers the induced turbulence in the film due to high 
vapor velocity is sufficient to dramatically increase the 
Nusselt number. High values of SO cause larger 
interphase mass-transfer rates which can lead to 
significant disturbance of the liquid-vapor interface 
for waves to start appearing. At high Pr, increase in 
heat transfer is again possible due to such phenomena. 

SUMMARY AND CONCLUSIONS 

The main conclusions and summary of this work are 
follows : 
The defined tube condensation process is found to 
depend on a number of physical parameters. Low D 
and low E number approximation reduced the 
count to five. These are Fro/Reo, Bo, p*, Pr, and So. 
Assumption of the form of velocity and tempera- 
ture profiles reduced the coupled set of partial 
differential equations to three nonlinear and coup 
led ordinary differential equations. 
The stiff set of ordinary differential equations is 
found to be well posed for initial conditions 
determined from the analytic solution of a sim- 
plified condensation process in the tub-e. 
Numerical solution of the stiff set of equations has 
been carried out by an efficient and convergent 
computer code for wide range of arbitrary 
parameters. 
Results from the numerical solution revealed no 
practical difference in heat transfer, condensate 
mass flow and film thickness between it and 
analvtic solution of Nusselt for very low values of 

H.M.T. 23/2--o 

6. 

I. 

1. 

2. 

3. 

4. 

5. 

6. 

Fro/Reo, high B, and high Prt. At high Fr,/Reo, low 
B. and high Pr, disparities in results between 
analytic and numerical solutions can be significant. 
Detailed hydrodynamic results for a wide range of 
parameters have been obtained for the first time in 
this study. 
Significant results have also been obtained for low 
values of liquid Prandtl numbers. It is shown that 
the effect of inertia of vapor-liquid flow is in such 
circumstances significant. 
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CONDENSA~ON EN FILM LAMINAIRE DUNE VAPEUR PURE 
SATUREE DANS UN TUBE VERTICAL 

R&m&-- On itudie analytiquement la condensation permanenteen film laminaire dune vapeur satureeen 
6coulement force dans un tube vertical. lorsque le profil de vitesse de la vapeur a l’entrie du tube est etabli et la 
temperature paridtale est maintenue constants. 

On examine en detail les equations et les cot&ions aux limites de facon B determiner ies param&res 
caracteristiques du probleme.. Dans un large domaine de conditioas dint&t pratique, on trouve que le 
m&anisrne de ~ond~~tio~ est gouvemt par cinq parametres: it rapport du nombre de Froude de la vapeur 
au nombre de Reynolds, le nombre dAmhim& le rapport dea viscositis de la vapeur et du liquide, le 
nombre de Prandtl du liquide et le nombre de sous-refroidiient. 

Une solution numtrique du systeme d’iquatlons montre dcs differences considerables, sur 
l’hydrodynamique et sur Ie transfert thermiquc, en fonction de ces parametres. Une comparaison des 
r&hats avec la solution analytique de Nusselt montre qdaux pressions dlevtes, aux forts nombres de 
Prandtl et aux grands rapports du nombre de Froude au nombre de Nusseh, la solution analytique 
sousestime le transfert massique P I’interface et ie transfert thermique. Des diff&ences significatives sont 
trouvees, aux faibles nombres de Prandtt, entre les solutions analytiques et numiriques, pour les solutions 
hydrodynamiques et thermiques. Ces dii&ences viennent de ce que les termes d’inertie sont nCgligCs darts les 
@ations du mouvement du liquide et de la vapeur dans le modele analytique et ce travail pr&sente ieur prise 

en compte. 

H.M.T.673 

LAMINARE FILMKONDENSATION EINES REINEN GESA’ITIGTEN DAMPFES 
BEI ERZWUNGENER STRGMUNG IN EINEM SENKRECHTEN ROHR 

Ze - In einem senkrechten Rohr wurde die statiottisrc laminare Fiiondensation von 
gesgttigtem Dampf in etzwungener StrSmung untersucht, und xwar fit den Fall, da8 der hydrodynamische 
Einlauf am Rohranfang abgeschlossen ist und die Roh~a~tern~at~ konstant ang~o~en wird. Die 
Gieichtmgen tmd Randbedingtmgen, die den Kondensationsproxell beschreiben, wurdcn im einxelnen 
untersueht, urn die wesentlichen Parameter des Problems zu bestimmen. Filr einen breiten Bereich von 
praktischen Anwendtmgsf%n wurde geftmden, dal3 da KondensationsprozeD mit 5 Parametern beschrie- 
ben werden kann. Diese sind: das Verhiihnis von Froude- und Reynolds-Zahl des Dampfes, die 
Auftriebamltl, das Verhiiltttis der Viskosititen von Dampf tmd F&&&it, die Prandtl-Zahl der Fhissigkeit 
und die Unterkiihltmgs-ZahL Eine numerisehe Losung des sich ergebenden Satxes von Gieichungen zeigt 
me&Ii&e Ver%ndertmgen in der Hydrodynamik und beim W&metranaport, werm die genannten Parameter 
variiert we&n. Es wurde au& ein Vergleich der Ergebnisae mit Nusselts analytischer Lijsung (W~~ut- 
Theorie) durchgefiihrt mit dem Ergebnis, daB sich nach dieser Theorie bei hohen D&ken, grot?en Prandtl- 
Zahlett und bei grol3em Verhiiltnis von Froude- zur Reynolds-Zahl die Kondensationsllinge und die 
Filmdickezu klein uttd da Staff- und Warmetransport xu grol3 ergibt Bei kleinen Prandtl-Zahlen reigen sich 
gravierettde Unterschiede xwischen der analytisohen und der numerischen Losung sowohl fii den 
Wiirmetransport als such fm die Hydrodynamik. Dieae Unterschiede sind eine Folge der Vemachliissigung 
der Tr&Ilteitsglieder in den Bewegtmgsgleichtmgen von Flilssigkeit und Dampf bei der analytischen Liisung 

turd ihrer ~sichtig~g im hier vorgestellten Modell. 
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JIAMWHAPHAII I-IJI~HO’IHAII KOHaEHCAUMX WiCTOrO HACbIUEHHOI-0 I-IAPA 
B BEPTkiKAJIbHOti TPYSE I-IPM BLIHYXKAEHHOM TE’-IEHWH 

Amornunn - l7poeene~o aHankmmcxoe mcnenonawfe cTauHoHapHoii naMmiapHoii nneeo~sofi XOH- 

AeHCaUHHHaCbUUCHHOrOIla~llpH BbUiyWleHHOM TeSeHHHBBepTHYanbHOiiTpy6CBCAyrae IlOJlHOCTbIO 

jKiBHTOr0 U~Mn CXOpOCTHllapa Ha BXOAe B Tpy6)‘H IlOCTOnHHOfi TeMIlePaTypbiCTeHXH ~py61~. 

Y~BHeHIUiH~HH'iHble yCJlOBIUI.OllHCblBaiOIUHC n~U~XOHACHOLUHH,HCCfleAOBBnHCbnOA~6HO 

c uenbm onpenenemin cooTe.eTcrByrouuix napaMeTpon 3anaw. Ann wipoxoro nHana30Ha ycnomfi, 

IIfNlCTatlnXlOluHX Il~XTH'IetXHii HHTepeC, HairAeHO, ST0 IlpOUeCC XOHAeHCaUHH OlIHCblBaeTCn IlnTbIO 

napaMeTpaMH:omolueHHeM wcna 0pyna x mcny PeRHonbnca arm napa, wcnoM nnae.ywzTw, OTHO- 

III~HH~M Bn3XOCTH napa X Bn3XOCTH XHAXOCTH, YHCnOM IlpawnTnn Dnn YKAXOCTH H YHCnOM 

Henorpeea. 

qHCAeHHOe peIUCHHC IlOJlyllCHH0i-i CHCTeMbl yPaBHeHHfi llOXa3blBaeT, ST0 I'lpH H3MeHeHHH BTHX 

napaMeTpoe Ha6nwtamTcn 3Hawrenbwde pa3nsfwn B rmponmam~e H TennooheHe. Taxrre 
IlpOBeAeHO CpBHeHHe Pe3yJlbTaTOB C BHaJlHTHWCXHM FlUeHHeM HyCCenbTa AAn IlOCTOnHHOrO MeP(- 

+a30BOrO CABHI% H HaiiAeHO, 'IT0 IlpH 6OAbLUHX MEzJleHWIX. BbICOKHX 3HaSeHHRX qHCJIa nPaHATJln H 

BblCOXHX3Ha'leHHnXOTHOlUCHHR YHCJla@pyAaX'tHCJlyPekHOAbACa, aHaJIHTH’leCXOe~UI~HHe HyCCeJIbTa 

3aHHXCaeT AJlHHy XOHAeHCaUHH H TOJUUHHy IlJI.i+HXH H UiBbUUaeT BeAHWHy MeX@a30llOrO TellnO- H 

MaCCOO6MeHa. npH HH~XHX 3HaqeHHnX qHCna PeiiHOJIbnCa Ha6nIonaloTcn 3HawrenbHbte pacxorneHHn 

MeWty aHaJlHTWCCXHMH H 'IHCneHHblMH )KUIeHHRMH XaX B Pe3yAbTZlTaX IlO TellJlOO6MeHy, TaX H IlO 

rwpon5iHaMHKe. 3~ii pacxorneHHn nwwoTcn cnencTmeh4 npeHe6pexeHHn mepuHoHmMH weHaMH 

B yp3BHeHHnX nnmreiwn ~cK~x~CTH H napa 8 aHamfrmecxofi MonenH H Hx y+ra Monenbm. npen- 

cTaBACHHOfi B AaHHOk pa6ore. 


