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ON THE CONSISTENCY CONDITIONS OF AVERAGING 
OPERATORS IN 2-PHASE FLOW MODELS AND ON THE 

FORMULATION OF MAGNETOHYDRODYNAMIC 
2-PHASE FLOW 
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Abstract-An analysis has been carried out on the space averaged form of 2-phase flow conservation 
equations in which are also included the electromagnetic fields in the low frequency (MHD) approximation. 
The analysis considers ensemble and time averages of the space integral operators and attempts to derive 
their consistency conditions. It is shown that it is possible to rigorously derive the consistency conditions 
between averaging operators, provided that the stochastic process for the “noise” of the space integral 
operators can be identified. A plausible choice for this “noise” has been made and the parameters of its 
description have been identified. The 2-phase flow MHD model is formulated so that it satisfies the 
consistency conditions of the integral operators and in which the space integral operator is defined over an 
area. A simplified l-dimensional MHD model is developed in terms of the conservation equations for the 
?-phase mixture. The boundary conditions and constitutive equations which enter into the model are 
discussed for applications dealing with 2-phase flow in magnetohydrodynamic generators and in magnetic- 
ally confined plasma fusion reactors. 

I. INTRODUCTION 

RIGOROUS formulation of the 2-phase flow conservation equations has for some time been a 
challenge, and the inclusion of electric and magnetic fields into the theory has not been carried 
out to date. The difficulty in the formulation is associated with the presence of a large number 
of interfaces and the apparent random nature of the flow field. For this reason large number of 
2-phase flow models have been discussed in the literature in recent years[l-41. 

Due to the presence of interfaces in 2-phase flow, in all the proposed models it is recognized 
that 2-phase flow modeling is conceptually different from the modeling of multicomponent 
reacting flow mixture of continuum mechanics (Eringen[S]). These models are derived from 
macroscopic conservation equations of each phase and the interface boundary conditions. The 
later set of equations specifies the interphase mass, momentum, energy and entropy transfer as 
well as the boundary conditions for the electromagnetic fields. Integration of these macroscopic 
equations over space and time segments yields the desired 2-phase flow conservation equations. 
Thus Ishii[ l] carried out time-averaging of the conservation equations and derived both the 
mixture and 2-fluid 2-phase flow models. Delhaye and Achard[2] integrated the conservation 
equations over the volume, area and segment, and Chawla and Ishii[4] carried out area- 
averaging of the ensemble averaged conservation laws. The resulting equations in all these 
models are expressed in terms of time and space integrals into which the details of the 2-phase 
flow field have been thrown. Consequently, two new difficulties appear: how to specify 
constitutive equations for the time and space integrals, and how to select the value of the 
averaging time interval and the size of the averaging space regions. Different choice of these 
values will give rise to quantitatively as well as qualitatively different solutions of the 
differential equations. For these reasons it is important to identify precisely the meanings of 
integral operators, since only then the results from the theory and the experiment can be 
compared. 

An important initial step has recently been taken by Delhaye and Achard[2] who studied 
time-averaging and statistical-averaging operators. However, they did not show in which way 
these two operators can be made to agree with each other. By establishing the conditions under 
which the averaging operators can be made to agree with each other, it is possible to provide an 
internal consistency between different 2-phase flow theories and pave the way for their rigorous 
classification. 

This paper has the following objectives: 
1. To extend the range of applicability of existing 2-phase flow models by incorporating into 

the formulation the electric and magnetic fields. 
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2. To present sufficient conditions for the equivalence of averaging operators in 2-phase 
flow models. 

3. To present a magnetohydrodynamic 2-phase flow model and discuss its constitutive 
closure conditions for a number of physical applications. 

2. FORMULATION OF 2-PHASE FLOW MODELS 

The 2-phase mixture will be envisioned as consisting of either the continuous vapor or gas 
phase in which liquid is dispersed or of the continuous liquid phase in which vapor or gas is 
dispersed. If this 2-phase mixture consists of liquid metal and gas and if a significant 
magnetohydrodynamic effect is to be produced from the flow, then the continuous phase must 
necessarily be the liquid metal, in order to produce continuous-path, high electrical conductivity 
for the electric current. 

A phase will be labeled by the subscript k whose value is 1 or 2 and either value can be 
associated with the dispersed or continuous phase. The interface between phases will be 
modeled by a surface of discontinuity. For each phase and for the liquid-vapor interface the 
macroscopic equations which describe the conservation of mass, momentum, energy and the 
electromagnetic fields can be written as follows (Eringen[6] and Jackson[7]): 

(a) Conservation of mass, momentum and energy 

For each phase 

& (Pk*k) + v * (PkvkVk) + v ’ Jk - pkdk = Bk (1) 

where qk, Jk, $Q and Bk are given in Table 1. 

At the interface 

kz2 (hkqk + Ak . Jd = A (2) 

where 

tik = pk(vk - si) ’ n^k (3) 

is the interphase mass transfer, Si is the interface velocity and H is the mean curvature of the 
interface. Vs is the gradient vector in the surface and A is the surface tension term given in 
Table 1. 

(b) Maxwell’s electrodynamic equations 

For each phase 

where &, xk, 21, and Ak are given in Table 2. 

At the liquid-vapor interface 

(4) 

(5) 

where is is the interface surface current. 
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Table 1. Coefficients of the general balance eqn (1) and interface transport eqn (2) 

CONSERVATION OF yk 4 Pk@k Sk A 

MASS I 0 0 0 0 
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ANGULAR MOMENTUM 

ENERGY qk-nk’vk I 
Pka*vk+ 1,’ Ek I I 0 PHVkS,t v<s$Vv”si 

Table 2. Coefficients of the Maxwell’s 

LAW ‘k 

FARADAY Bk 

AMPERE 0 

V*B,=C 0 

V*Ek=O 0 

lectrodynamic eqns (4) and interface boundal 
- 

xk ‘k ‘k @k 

Ek 0 0 -Bk 

Bk 0 ik /hcEk 

0 Bk 0 0 

0 Ek 0 0 

I conditions (5) 

x 

0 

I 

0 

0 

Equations (l)-(5) describe a continuum of the following type: 1. Local field theory. 2. 
Non-relativistic fluid (V/C G 1). 3. Low frequency (MHD) approximation (locally neutral plasma, 
negligible displacement current and negligible ion slip). 

(c) Space, time and ensemble averaged form of conservation equations 
A useful set of conservation equations for the 2-phase flow is obtained by averaging the 

conservation eqns (1) and (4) over an area which is perpendicular to the main flow direction. 
Area-averaged form of equations is most useful when analyzing f-phase flow in internal 
geometries such as pipes, magnetohydrodynamic channels or in the region between the pin 
bundles of a nuclear reactor (Chawla and Ishii[4], Dobran[8]). 

Area averaging of the conservation eqns (1) and (4) is carried out for each constituent phase 
over the portion of the total flow area which the phase occupies at time t. Figure 1 illustrates 
the nomenclature. To interchange the order of integration and differentiation after the area 
averaging procedure, the mathematical identities of the Appendix A are utilized. Equations (6) 
and (7) given below show the final product of these operations. 

(6) 

The operator on the quantities inside square brackets in the above equations is just the quantity 
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Fig. I. Variable area channel with 2-phase flow and definition of terms for the area-averaging operation. 

inside the brackets, i.e. 

The form of eqns (6) and (7) is valid if the integrands on the left side of equations in Appendix 
A are continuous over the region of integration. When the interface becomes tangential to ar, 
while [i remains finite, the integral does not exist, since no unique value can be assigned to the 
integrand. These isolated singularities are a consequence of the physical model which assumes 
that the interface is a surface of discontinuity. If necessary they can be accounted for within 
the theory. However, due to the turbulent fluctuations of the flow, it is highly improbable that 
the conditions given above can be met for the occurrence of these singularities. 

Time-averaging of eqns (6) and (7) is carried out over an interval of time T. This procedure 
readily yields a set of equations which is similar to eqns (6) and (7) but where the operator now 
becomes 

A third averaging procedure will be introduced shortly. Towards this end it may be noted 
that in turbulent flow modeling it is considered that the macroscopic variables in the con- 
servation eqns (1) and (4) describe turbulent fields. The same is then true in both the area 
averaged and time averaged form of eqns (6) and (7). In this way the dependent variables 
entering into these equations are random variables and can be defined on the parameter space 
which will be taken to be the time. Equations (6) and (7), therefore, describe stochastic 
processes; to indicate explicitly which variables are random variables, we will modify the 
meaning of the operator in eqn @a) by writing 

and the operator in eqn (9a) by writing 

(8b) 

Pb) 

The two bars over dk and & in (8b) and (9b) stress the fact that both are random variables. 
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The third operator is now defined on the area-averaged form of conservation equations and 
operates over the probability space of the random variables. This is equivalent to taking the 
expectation (ensemble average) of the area averaged equations. If it is assumed that the 
probab~ity integrals converge in the mean square sense or with the probability one, the result of 
this operation is that the operator in eqns (6) and (‘7) is replaced by the following 

O[-, e,da]=E[I, &da}. (10) 

Recently Chawla and Ishii[4] first carried out ensemble averaging on eqn (1) and then area 
averaging. Their procedure is obtained by replacing the operator in eqn (6) as follows. 

(11) 

In the development of Z-phase flow equations for the flow in pin bundles of a nuclear reactor, 
Chawla and Ishii assumed that the interfaces are not of random nature and, therefore, they felt 
justified in carrying out ensemble averaging of the conservation equations prior to the area 
averaging. 

3. ANALYSIS OF AREA AVERAGE, TIME AVERAGE AND 
ENSEMBLE AVERAGE OPERATORS 

(a) Analysis of the ensemble average operator 
In this section a closer examination of the ensemble averaging operator will be carried out. 
Let us define the stochastic integral by 

Fk 3 I Jk da. (12) 

Assuming that the area integral converges in the mean square sense, then with probability one 

where E{& 1 &} is the conditional expectation. If the stochastic correlation coefkient 
;rk is defined by the relation 

then eqn (13a) can be written also as 

E{I, & da} = E{I,, ~kE{~k}du}. fl3b) 

If in the above equation we let & = ok, i.e. the area @ is an ordinary function and not 
a random function, then necessarily <k = 1. The expected value in (13b) is now taken 
over the ordinary function (the value of the ordinary integral) which is just equal to 
the value of the ordinary function (the integral). This, then, proves assertion (11). 

The stochastic correlation coefficient <k has a value different from unity whenever 
there is a correlation between the space-time value of fluid variables and &. In the 
immediate vicinity of the liquid-vapor interface the correlation is strongest and a fluid 
model might be envisioned with a correlation boundary layer with effective thickness 
equal to the length over which $, differs significantly from the value of unity. The 
structure of turbulent flow determines Gyro and the correlation coefficient can be 
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regarded, therefore, as a constitutive quantity. Standard probability arguments can be 
used to show that if +jk = 1, then & and & are uncorrelated and not necessarily 
independent, but if they are independent then it must also follow that they are 
uncorrelated or ik = 1. 

The above exposition clearly demonstrates that care must be exercised in pos- 
tulating that the ensemble average of the area average quantity is equal to the area 
average of the ensemble average quantity. 

(b) relation between the ensemble average and the time average of the area aueruged 
2-phase flow e~u~~~ons 

In this section the connection between ensemble average and time average 
operators will be investigated. Specifically, if the time average of the stochastic 
process (12) is defined by 

(14) 

then it is of interest to be able to seek conditions under which eqns (6) and (7) are 
identical no matter whether the time average operator (9b) or the ensemble average 
operator (10) is utilized. Hence we wish to investigate the requirements which will 
give 

E{ii;k} = & (15a) 

The proof of the above propositions is facilitated by decomposing the stochastic 
process (12) into an ordinary function of space and time and a stochastic “noise” 
function which is constructed as follows 

E{&) = fk, E{&f = 0. (17a) 

Since in this paper we will deal only with differentiable (in the ordinary sense) 
stochastic processes, it is permissible also to write using above equations. 

Combining (14), (16) and (17a); and (14), (16) and (18b) yields, respectively 

ft, = E{&..} + + 1;“’ & du (194 
f T/2 

Wb) 

(W 

(18b) 

WW 

pr~~osi~i~~. With probability Pi, FkkT can be approximated by I?{&,), and with probability P2 
(a/~t)~k~ can be approximated by (a/at)E{~k~}. 
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Proof. Indeed, using Chebyshev inequality[9] 

(194 

with E, > 0 and er > 0 completes the proof. 
aq, and rrdqd,, are the variances of the stochastic processes (19a) and (19b), respectively. 

Since these variances are only functions of the noise spectra of the processes (19a) and (19b), 
their estimation is not difficult. 

The noise, r&, fluctuates generally rapidly with time. Because by construction the ensemble 
mean of rIk is zero, it can physically be argued that the product &(t)&(t+7) is as much 
positive as it is negative and generally independent of time t, that is, Wk is a stationary process. 
Also E{r&(t)&(t + T)} should be greatest for small values of 7 and smallest for large values of T. 
Certainly, if there were any periodic frequency component of the process in &, then whenever 
the period of this component is equal to the integer value of 7, the autocorrelation function 
would exhibit a peak and the decomposition (16) would not be acceptable, since we would 
require that the periodic component of the process be included in fk and not in Ak. 

There are infinite numbers of distribution functions for the autocorrelation function &(r) = 
E~~~~~)~~(f + 7)) which satisfy the above requirements. In Appendix B an analysis is presented 
by postulating that I&, is normally distributed with zero mean and variance a;,. It is shown 
there that it is possible to select the variances of processes (19a, b) to be arbitrarily small by a 
suitable choice of Q/T and Rs,(0)/T2 where Q(O) is the average power of the noise &. 

To complete the proof which leads to identities (15a, b) the ordinary function, fk, of the 
process (16) need to be examined. 

For this purpose, and without loss of generality, let the decomposition of fk be harmonic 

fk = A&) sin(w,t) 

with the characteristic frequency of the process wk/27r. The gain factors defined by the 
relations 

Wa) 

1 
I 

l+r’* afk du 
r-r/2 au 

afk WkT 

at 2 

(21b) 

have identical values. We will require that the averaging time period T is selected in such a way 
as to produce a gain factor close to one, since only then can the important information of the 
process in our solution to the problem be retained. Thus, it is necessary that 

The assertions (15) are now proved by the following sequence of steps 

(21c) 

(154 
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The results (15a, b) are very important since they allow a self-consistent formulation of the 
2-phase flow theories. 

If conditions which lead to results (15a, b) are satisfied, the implication of these equations is 
that the ensemble mean of a stochastic integral can be obtained by computing the area integral 
over only a typical sample function of stochastic processes & and &. In mathematical form, if 
6 signifies a typical sample function of the stochastic process, eqns (15a, b) can be written as 
follows 

These equations place a restriction on the selection of a fyp~cu~ sample function over which the 
time-averaging is permissible. Experimentally this can be accomplished by carrying out time- 
averaging over various subintervals of T and comparing the results with the average over the 
entire record T. If these averages are the same, the selected sample function is typical. In fast 
transients of the system, the above procedure will not be possible and in this case an 
extrapolation of the theory is required. 

If the stochastic processes & and & are decomposed similarly to the eqn (16) and if they 
satisfy the same probability requirements (19c,d) and the gain factor requirement (21c), then 
from the set of equations which are similar to eqns (lSa, b) it can be concluded that eqns 
(15c, d) can also be written as follows 

(1Se) 

These results are slightly different from the model proposed by Chawla and Ishii[4] in that the 
area integral over which the ensemble mean of a physical quantity is to be evaluated should 
correspond to the “average” area. In the theory of the above authors no mention is made of 
how to select &. The theory presented herein leads to the natural selection. 

It is clear from the preceding exposition that the replacement of area integrals by segment or 
volume integrals will not introduce any new conceptually different results. The area integrals 
can be replaced by the generalized (Lebesque) measure. 

4.A MODEL FOR THE MAGNETOHYDRODYNAMIC 2-PHASE FLOW 

In the last section of this paper a magnetohydrodynamic 2-phase flow model is presented. 
The model is assumed to satisfy the consistency conditions which lead to eqns (15e, f). The 
presentation of a 2-phase flow MHD model is timely in view of the recent interest in liquid 
metal-gas Row in MHD generators (Dobran[g], Petrick et al.[lO], Pierson et al.[tl] and 
Dunn[12]), and the use of liquid metal as a primary blanket coolant in a magnetically confined 
plasma fusion reactor (Chan [ 131 and Chao [ 141). 
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1. Flow is predominantly in one direction only, z-direction in Fig. 1. 
2. The density and pressure have flat profiles along any cross-sectional plane perpendicular 

to the flow and they are uncorrelated with any other flow variable: E{$} = E{{}E{t!}, 
Ecp”;} = E{fi}E{B}. 

3. Negligible surface tension effects. 
4. The boundary of the duct is stationary and impermeable to mass. 
5. Electric and magnetic fields are uncorrelated with the electric current and fluid velocity, 

and have flat profiles. 
6. Ohm’s law for each phase 

has a negligible contribution from the Hall effect (last term in the above equation). 
Let us define 

I = _ 
E{&} da = E{&)(E{0~}) = a&(&) 

Et&) 

where a is the cross-sectional area of the duct and & is the void fraction defined by 

With the above definitions, eqns (6) and (7) become 

(22) 

(23) 

(24) 

The governing conservation equations for the 2-phase mixture are obtained by summing up 
the constituent phases in eqns (23) and (24). In this process the integrals which contain 5 
disappear as a consequence of the interface transport conditions (2) and (5) and assumption 3. 
The integrals over the boundary of the duct ck which contain tik also vanish because of 
assumption 4. Hence 

The set of eqns (23) and (24) form the basis for the study of a Z-fluid model formulation of 
MHD. This study will be presented in the future. Here, instead, eqns (25) and (26) will be 

ES Vol. 19, No. IO-E 
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reduced to what is commonly known in the literature as the drift flux model. In the absence of 
electromagnetic fields, this model has been found to predict the 2-phase flow behavior 
accurately when there is a strong thermal-hydraulic coupling between the phases. 

The drift flux model is formulated in terms of the mixture conservation of mass, mixture 
momentum equation, mixture energy equation, the continuity equation of one of the phases and 
the mixture form of Maxwell’s equations. The reduction process which leads to the final set of 
equations involves long algebraic manipulations, and only highlights will be given here. 

(a) Kinematics 
The mixture mass density and velocity are defined by comparing the 2-phase mixture 

continuity eqn (32) with the continuity equation for the single phase flow. 

Velocity of the center of volume is defined as 

(27) 

(2% 

and the dispersed phase drift velocity is defined by 

?dj = (cr,) - (j). (30) 

Combining eqns (28)-(30) the dispersed phase and continuous phase velocities are expressed by 
the relations 

PIa, b) 

The model will be formulated in terms of the mean velocity and the drift velocity, The later 
velocity field is convenient since its constitutive expression is usually very simple [ IS]. 

(b) Conservation of mass equations 
Utilizing the coefficients for the conservation of mass from Table 1 in eqn (25) results in an 

equation for the conservation of mass for the mixture 

(32) 

where 9,, = ?,,, - ti,. The continuity equation for the dispersed phase follows from eqn (23), 
Table I and eqns (31), i.e. 

(33) 

where 3dj = i’di * 6, and I=‘, is the dispersed phase mass generation rate per unit volume defined 

by 
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(c) Mixutre momentum equalion 

1363 

The momentum equation for the mixture is obtained from eqn (25) and Table 1. The result is 

In the above equation the mean axial shear stress is defined by 

;,,, = ,z2 hk(‘fkz& 

The wall shear stress is defined by 

and the mean electric current is given by the expression 

The covariance term 

cov(&kfik@k@k) = 6kljk(wG) - Gk;kk(@k’k)(@k) 

represents the effect of nonuniformity in the velocity profile across thest cross-sectional 
area, (@k$) - {&)(&), and the effect of turbulent momentum transport, (w;wL). 

(d) Mixtltre enthuIpy e~u~~~on 
The steps which lead to the enthalpy equation for the 2-phase mixture are as follows: 
1. Form the mixture ~n~ernu~ energy e~~uf~on from eqn (25) and Table 1. 
2, Form the mixture kinetic energy e~uufion by first forming the kinetic energy equation for 

each phase, area-average and ensemble-average the kinetic energy equation for each phase, and 
then add the averaged kinetic energy equations. 

3. Subtract the mixture kinetic energy equation from the mixture internal energy equation. 
The result is 

The viscous dissipation function, the interfacial mechanical energy transfer function and heat 
fluxes are defined, respectively, by 
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Zw’- I: 
k-1.2 I,,,, ‘{(=)I d5’ 

The mixture enthalpy is defined by 

and the enthalpy difference is given by 

The covariance term is defined by 

COV(&ki)khk@k) = c;kik(G, - Gkfik$kj(*k) 

and is responsible for the turbulent energy transport and the nonuniformity in temperature and 
flow fields across the duct cross-sectional area. 

(e) Maxwell’s efectrodynamic equations and Ohm’s kzw 
From Table 2 and eqn (26) the Maxwell’s equations for the 2-phase mixture become 

Excluding the Hall effect, Ohm’s law for the mixture is 

& and k_ are the electrical conductivity-flow correlation coeficients defined by Dobran[8]. 

The mean electrical conductivity is given as 
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Some further simplification of the equations presented in Sections 4(c,d) is possible if it is 
assumed that the velocity has a flat profile. In that case (Gtk&) = (&)(SJ and in the momentum 
equation, eqn (34) the cov term becomes 

k& COV@kfik~k@k) = k& ~kbk(&i%) 

since the velocity can be decomposed into the mean and a fluctuating component (noise), 
wk = $ + WA. Zk=r,2 (u&.(w%$ represents the area mean of the velocity correlation and is 
responsible for the turbulent momentum transport. Also, in the energy equation, eqn (39, the 
cov term becomes 

and represents the effect of the turbulent energy transport. Velocity and energy correlation 
terms are functions of the local turbulent structure of the 2-phase flow and enter into the model 
as constitutive quantities. Future work is needed to identify the values of these terms. A good 
procedure might be to classify their values according to the 2-phase flow regime. 

The integrals over the duct boundary perimeter Ck (Fig. 1) in the conservation eqns (23) and 
(24) are evaluated by specifying the boundary conditions. In the model the shear stress at the 
wall and the wall heat flux must be specified a priori through the constitutive relations. The 
constitutive equations should, as usual, satisfy the axioms laid down, as for example, by 
Eringen [6]. 

The two continuity equations in the formulation of the drift flux model are required because 
of the presence of two velocity fields. In the model the dispersed phase drift velocity can be 
specified as a constitutive quantity (see Ishii [ 151) and one of the continuity equations can then 
be used to solve for the void fraction aid. In the case of reacting flow k, needs to be specified 
also, unless the flow is in thermal equilibrium. In the latter case, r, is determined from the 
enthalpy eqn (35). 

The axial shear stress term i,,, in eqn (34) is of lesser significance than the axial turbulent 
shear stress term Zk=r,2 &;k&(wrk;is;,) which arises from the Zk=1,2 cov((Y&jk\tk$k) expression. 
Similarly, in eqn (35) the axial heat conduction term g,,, is of lesser importance than the axial 
turbulence energy transport term Z = k ,,2 &,fik(h;w;). These deductions are plausible in view of 
the highly irregular nature of the 2-phase mixture. 

In the electrodynamic eqns (37)-(40) the electric and magnetic fields at the wall of the duct 
need to be specified also in order to evaluate the integrals over Ck. These fields are determined 
from the electrical and magnetic state of the external electrical circuit of the duct. It is 
important to realize this point, since the external electrical circuit configuration of the duct will 
have a profound effect on the flow behavior. 

The surface current in the last term on the r.h.s. of the eqn (38) is insignificant unless the 
interface electrical conductivity is much larger than the conductivity of both phases. 

In applications involving 2-phase flow in magnetohydrodynamic generators ((Refs. [8, lo]), 
the continuous phase is liquid metal and the dispersed phase is inert gas with very small 
electrical conductivity. This arrangement of phases is necessary in order to achieve significant 
MHD effect in the channel. In that case (Gd) is negligible in comparison to (Gc) and it can be 
shown that (Dobran[8]) the MHD generator performance parameters can be ascertained from 
two experimentally determined parameters & = Cot (Gdi)/(.f) and kc. In the expression for &, 
(5) is the 2-phase volumetric flowrate per unit area; Co is the distribution parameter which 
accounts for the nonuniform flow and concentration profile in the channel (Zuber and 
Findlay[l6]), and (S,)/(J) accounts for the relative velocity between the phases. & represents 
the effect of the nonuniform distribution of electrical conductivity with flow in the cross- 
sectional area of the channel and has been defined previously in this paper. Both & and & are 
functions of the 2-phase flow regime. When the applied magnetic field is perpendicular to the 
main flow direction in the MHD channel and when the channel divergence angle is small and 
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the return current conductors properly routed, it can be shown (Dobran[8]) that the electric 
field and the induced current vectors in the fluid have only one component that is different from 
zero. This deduction follows from eqns (37)-(41). The induced magnetic field is in the direction 
parallel to the flow and becomes significant if the applied magnetic field is strong. With very 
strong applied magnetic fields, in the order of 10 Tesla, it is possible for the 2-phase flow to 
exhibit a significant transverse-to-the-main-flow pressure gradient which can cause redistribu- 
tion of phases in the channel. This experimental fact is fully accounted for by the theory 
presented if no assumption is made that the pressure is uniform across the duct cross-sectional 
area. For details the reader is referred to Ref. [8]. The field strength of the order of 10 Tesla will 
exist also in magnetically ~on~ned plasma fusion reactors and the 2-phase flow will appear 
when the liquid metal is utilized as a primary blanket cooIant. The boiling 2-phase flow of the 
liquid metal can be generated under fusion plasma quench conditions. 

5. CONCLUDING REMARKS 

The present work has presented sufficient conditions which give rise to consistency between 
different formulations of the 2-phase flow. It is shown that under rather general conditions the 
ergodic hypothesis on a finite averaging time interval can hold when applied to space-averaging 
operators. In order to explicitly determine a suitable averaging time interval, it is necessary to 
know the average power and the variance of the noise of space integrals. It would be of 
considerable value to undertake some experiments work for specific flow regimes in order to 
quantitatively identify the values of these parameters. The consistency conditions are expres- 
sed by eqns (19~ d) and (21~). 

This paper has also extended the range of applicability of 2-phase flow models by bringing 
into the formulation electric and magnetic fields. In Section 2 of the paper it was demonstrated 
how various 2-phase flow models are constructed and in Section 4 an application to a simplified 
l-dimensional Magnetohydrodynamic flow was carried out. The drift flux model formulation 
has been discussed for different MHD applications. 

NOMENCLATURE 

area 
defined in Table I 
magnetic induction vector 
speed of light in vacuum 
duct boundary perimeter 
electric field vector 
expectation or ensemble average, Elf) = Jz% 4 dP 
stochastic integral defined by eqn (12) 
gravitational force per unit mass 
enthalpy 
enthalpy difference, (id)-(k) 
electric current density 
electr~~l-conductivity-flow correlation coefficient 
center of volume velocity, defined by eqn (29) 
defined in Table 1 
mass flow-rate across the interface 
unit normal vector 
noise stochastic process, defined by eqn (16) 
static pressure 
probability measure 
heat flux vector 
interface velocity vector 
time 
averaging time interval 
internal energy 
volume 
velocity vector 
dispersed phase drift velocity, defined by eqn (30) 
axial flow velocity in the duct 
space vector 
axial coordinate in the duet 
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Greek symbols 
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void fraction 
mass generation rate per unit volume 
probability sample function 
defined in Table 1 
dielectric perm~ttivity of free space 
stochastic correlation coefficient 
defined in Table 2 
defined in Table 2 
magnetic permeability of free space 
electron mobility 
surface tension coefficient 
perimeter 
viscous stress tensor 
stress tensor, - p1 + n 
mass density 
electrical conductivity 
variance of stochastic process fir 
variance of stochastic process &ri/at 
variance of process n” 
defined in Table 2 
defined in Table 1 
defined in Table 2 
unit tensor 
defined in Table 2 
defined in Table 1 
defined in Table 2 

Subscripts 

c ~ontjnuous phase 
d dispersed phase 
i interface between phases 1 and 2 
k denotes phases d and c or 1 and 2 

m mean vaiue 
S surface 
w duct wall 
T depends on the averaging time interval 

Superscripts 
T transpose 

Special SYrnb(~~S 

& ensemble average, E{&} 

( ) area average operator, ( ) - -!_ 
I 

da 
QI <I‘ 
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APPENDIX A 

Figure 1 illustrates Z-phase flow in a variable area channel. In the flow an infinitesimal control volume is considered that 
is bounded by the duct cross-sectional flow area and the duct boundaries. Taking the limit as AZ +O the Leibniz and Gauss 
Divergence Theorems yield the following equations for a scalar field f. a vector field F and a tensor field F. 

I V,Fda =& 
I 

i,.Fdat 
“k,l.l, UX,.-JI (A41 

In these equations [, is the liquid-vapor interface segment and CA is the duct boundary segment for phase k. 

APPENDIX B 

Let ii,, be a covariance stationary normal stochastic process with zero mean and variance (~a,. Then 

E{&(f)&(t + T)} = Ra,(s) = Rr,(O) e-T’120~, @I) 

The variance of eqn (16) is 

I r+T,Z 

aqJ = T ,_r,2 I I 

,+I72 
E{iit(r,)ii,&z)}dr, dtz 

,mT,2 

=$l’ (I-~)R~,(0)e~‘2”“~,d~ 

=Ra,(0)[~IT;(~)erf(~)+2(~~e~~“u:r -I)] 

and the variance of eqn (l9b) is 

2 
=T R;,(O)(l -e- T212ujik ) 

The power spectrum of the process iit is 

S(w) = _/_I e-‘“‘RA,(t)dt 

from which it follows by the Fourier Inversion Theorem that 

Rr,(O) =& 
I 

= S(w)dw. 
T 

Thus, Rn,(O) is the auerage power of the process Ar. 
With finite average power, from eqns (B2) and (B3) we have 

lim aq, = 0 

a”“+0 
T 

I 
P,{IJCr - E{Fw)I < EI) = I, 6, >o. 

lim aRq,iar = 0 

02) 

(B3) 

P!(I~-$E{E*r)J<aJ=l, E2>0. 


