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Abstract---Constitutive equations for a multiphase mixture of fluids are presented. The mixture is 
assumed to consist of a single non-uniform temperature and no phase change is allowed. The theory 
is based on the conservation and balance equations of multiphase mixtures proposed by Dobran, 
and the constitutive assumption allows for the effects of temperature gradient, density gradients, 
velocity gradients, velocities and accelerations. A linearized form of the constitutive equations is 
presented for an arbitrary number of phases, and restrictions on the constitutive assumption are 
investigated by the second law of thermodynamics. The theory yielded a significant number of 
results and they are compared with previous investigations. 

1. I N T R O D U C T I O N  

In the theory of multiphase mixtures, the term phase denotes a portion of matter with a 
smoothly varying chemical composition and physical properties, and the phases are 
distinguished from one another by the weU-defined boundary surfaces. When the 
interracial area of the multiphase mixture is reduced to zero, this mixture is modeled by 
the theory of mixtures. It is important to carefully distinguish these two mixtures, since 
the latter theory has achieved considerable maturity principally through the works of 
Truesdell (1969), Eringen & Ingram 0965), Mueller 0968) and Bowen 0973). 

The theory of multiphase mixtures has not yet achieved a recognized status. This is 
principally because (l) no universal accord exists as to what constitutes a complete set of 
conservation and balance equations, and (2) the constitutive equations have not been 
rigorously studied. 

The existing theories of multiphase mixtures are of two varieties: (1) those that were 
constructed by utilizing an averaging approach, and (2) those that were postulated. The 
former theories are due to Drew (1971), Ishii 0975), Delhaye & Achard 0977), Nigmatulin 
0979) and Dobran (1982a). The postulated multiphase field equations are due to 
Goodman & Cowin 0972), Drumheller & Bedford (1980) and by Passman et al. 0983). 
The detailed discussions of various formulations were performed by Dobran (1982a, 1983) 
and by Bedford & Drumheller (1983). The theory of multiphase mixtures formulated by 
Dobran (1982a) has the following features: (1) it is motivated by the volume averaging 
approach of the macroscopic conservation laws of each phase; (2) it is given a rigorous 
mathematical structure; and (3) it is consistent with the theory of mixtures when the 
interfacial area is reduced to zero. In such a theory of multiphase mixtures, all phases of 
the mixture exist at each point of space, and each phase is described by the conservation 
laws of mass, and balance equations of linear momentum, angular momentum, energy and 
entropy. The interaction between the phases is accounted by the interphase mass, 
momentum, energy and entropy supplies, and the effect of the finite interfacial area or 
microstructural characteristics of the mixture can be taken into consideration in the theory 
through the non-local effect in the constitutive equations or through an explicit assumption 
of the microstructure in the'supply or interaction terms. 

Constitutive equations for multiphase mixtures have not been extensively studied in the 
past. Ishii 0975), Drew 0976) and Drew & Lahey 0979) have taken important steps 
toward the construction of a theory of constitutive equations for a 2-phase fluid mixture 
but they did not systematically utilize the second law of thermodynamics to restrict the 
form of these equations. An approach to where the second law of thermodynamics is 
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utilized to restrict the form of the constitutive equations is that of Drumheller & Bedford 
(1980). Their theory of  constitutive equations is based on (1) the second law of 
thermodynamics for the mixture as a whole, and (2) on the conservation and balance 
equations of immiscible mixtures which were derived using the "Hamilton's extended 
variational formulation". The validity of the second law of thermodynamics for only the 
mixture is not consistent with the volume averaging formulation of the conservation and 
balance equations of  Dobran (1982a) as well as with the time averaging formulation of 
Ishii (1975), since these formulations require the second law of thermodynamics for each 
phase. As discussed by Dobran (1982a), Drumheller & Bedford's (1980) equations are 
also special, since they have a built-in a priori constitutive assumption of the virtual mass 
and expansion--contraction effects and rest upon the premise of a variational principle 
whose validity is not altogether clear. Nevertheless, this variational approach yields 
constitutive equations for the microstructural characteristics of the mixture and the results 
of the theory agree with the selected special cases. Drumheller & Bedford restricted the 
constitutive equations by utilizing an entropy balance equation for the mixture as a whole 
and invoked the principle of immiscibility for the free energy or Helmoltz potential 
whereby the free energy of phase ~ is assumed to depend only on the independent variables 
associated with this phase. Passman et al. (1983), by extending on the work of Goodman 
& Cowin (1972), also utilized the entropy balance equation for the mixture as a whole to 
restrict the constitutive equations and invoked the principle of immiscibility or phase 
separation for the free energy. Their postulated field equations not only contain the effects 
of microstructure of the mixture but include also separate balance equations for these 
microstructural characteristics. Dobran (1982a) showed that the field equations based on 
the averaging procedures also contain the microstructural characteristics of the mixture 
in the supply or interaction terms for each phase as well as for the mixture as a whole. 
In the postulated theories of Drumheller & Bedford and Passman et aL there are no source 
terms in the linear momentum, angular momentum and entropy balance equations for the 
mixture as a whole as in the averaged theories, and, therefore, no recognition is made in 
these theories for the microstructural characteristics of  the mixture that can affect the 
motion of the mixture as a whole. Since the postulated field equations described above also 
assume explicit forms of  the microstructure of the mixture, it appears that these equations 
have ali'eady a built-in constitutive assumption. Consequently, when additional assump- 
tions on the constitutive equations are made it is difficult to judge their adequacy in 
modeling the physical phenomena. What is needed, clearly, is not only an extensive test 
of any theory with the experimental data, but also a clear delineation between the 
multiphase field equations and constitutive equations. 

It is clear from the above discussion that the constitutive equations for multiphase 
mixtures have not been adequately studied. The principal reason for this is that the 
proposed theories of multiphase mixtures are not complete, and many of them are not 
given a sufficient mathematical structure which is indispensible for the proper study of 
constitutive equations. The objective of this paper is to study the constitutive equations 
for multiphase mixtures utilizing the conservation and balance equations of Dobran 
(1982a), since this formulation appears to be more satisfactory than formulations 
presented in some other investigations (Dobran 1982a, 1983). 

The conservation and balance equations for multiphase mixtures are summarized in 
section 2. In section 3 a single temperature dispersed mixture without the phase change 
is selected for analysis, and the second law of thermodynamics for each phase is used to 
derive restrictions on the constitutive assumption. In section 3.4 the mixture is assumed 
to consist of fluids only, and in section 4, the iinearized constitutive equations are derived. 
The discussion of results and comparison of these results with existing formulations is 
carried out in section 5. 
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Notation 
A direct notation is utilized in this paper, and the space is the 3-dimensional Euclidean 

space E 3 with the Cartesian coordinate system. Vectors and vector fields are denoted by 
the Latin bold-faced miniscules: a, b, x . . . .  Second order tensors are viewed as linear 
transformations in E 3, and are denoted by Latin bold-faced majuscules: A, B, T . . . .  (except 
X which is a vector of the reference position of  the material body point). The product of  
two linear taransformations is a linear transformation, AB = C, and the product of a linear 
transformation and a vector is a vector, x = Tu. T r is the transpose of T, T-~ is the inverse 
ofT, det T is the determinant ofT,  and the contraction o fT  is its trace tr T. The divergence 
operator is denoted by V., Va is the gradient of a, and the gradient of a vector field b is 
the linear transformation Vb. I is the unit linear transformation. The tensor product of  
two vectors a and b is denoted by a ® h and is identified as a linear transformation. 

The basis in E 3 is denoted by the Cartesian triad of unit vectors (el, e2, e3). The tensorial 
indices are denoted by the italic light-faced miniscules: i, j . . . . .  and majuscules: L J, • . . ,  
and the summation convention always applies to them. The Greek light-faced symbols =, 
8, a, fi always occur as subscripts or superscripts and denote the phases of the multiphase 
mixture: ~, /~, a, 6 = 1 . . . . .  7. The sum of phases (= = 1, to = = 7) is always .denoted 

explicitly by the summation symbol :~. Other symbols are defined in the text when they 
~t 

first appear. 

2. CONSERVATION LAWS FOR THE MULTIPHASE MIXTURES 

In this section, I will summarize the conservation laws for multiphase mixtures which 
are proposed by Dobran (1982a). This formulation utilizes the volume averaging approach 
where ~ is the arbitrary averaging volume which contains all phases of the multiphase 
mixture and ~= is the volume of phase = in ~e" at any instant of time. The volume-averaged 
quantity of the field F= is defined by 

and the (partial) density of phase = is defined as 

7 (p,). 

The density-weighted average of a physical property H, will be denoted by/:]~, whereas 
the partial quantity of a physical variable (7= will be denoted by t~=, i.e. 

R,_= (p,Jv,) 1 
( p , )  = 

d,= (G,). 

2.1 Kinematics 
The multiphase mixture consists of 7 diffusing bodies (phases) ~=, ~ = 1 . . . . .  7, and 

each ~= consists of body points or particles X,. The position x in E 3 of the body points 
X~ is represented by the configuration Z= of ~=, i.e. 

x - -  z=(X,, t). [2.1] 
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To each ~ ,  is assigned a reference configuration K~ at time to < t, and the place of  the 
particle X, in i¢, is given by the following expression: 

X ,  = K, (X, ,  to). [2.2] 

Combining [2.1] and [2.2] we have 

x = z,(x~-~(x,, to), t )  - z , , ( x , ,  t ) ,  [2.3] 

where g~ is the deformation function of  ~ , .  
For each phase ct and at each time t, the expression [2.3] is assumed invertible, 

X, = Zf,,l(x, t), and Z= and Zg, ~ are assumed twice differentiable. The spatial coordinates 
will be denoted by the lower ease italic indices, x = x,¢i, and the material coordinates will 
be expressed by the upper ease italic indices, X~ = X,#I, where e : e ,  = 6u, and e rex  = 3~x 
are the Kronecker deltas. 

The velocity and acceleration of  a body point or particle X, are, respectively, 

L 0z=(x,, t) ~, a2z=(X~, t) 
= St ' = 3t 2 [2.4] 

The deformation gradient and its inverse for the phase ,t are the linear transformations 
defined by the following expressions: 

F, = GRAD Z~,(X,, t), 

F~ -1 = Vgg, l(x, t), 

OX k 

F ~  = OXk 
~X~,' 

[2.5] 

where G R A D  is the gradient with respect to the material coordinates, and the velocity 
gradient of phase ct is defined as follows: 

L, =- V~,(x, t) = l~/~Fa -1 ,  L~i j = 0~t'-'-'~/ 
Oxj" 

[2.6] 

The density of  mixture, p, and the center of  mass velocity of  mixture, v, are defined, 
respectively, as 

p = ~ ~, p v = ~ ~,~,, [2.7] 
¢t ¢t 

where ~ is the partial density of  phase ~t and is defined above. In the 2-phase literature, 
it is a common practice to express ~ in terms of  the void fraction for phase ct and the 
true density of  the same phase. In this paper, I will, however, not utilize this approach, 
for it adds nothing to the theory. In the discussion of  section 5, I will have more to say 
about  this point. 

The diffusion velocity is the difference between the phase velocity and the mixture 
velocity, i.e. 

u,  = ~ - -  v. [2.8] 
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If we let F be a differentiable function of x and t, then the time derivative "following" 
the ath phase (material derivative for phase 0t) and the time derivative "following" the 
mixture (material derivative for the mixture) are, respectively, 

and thus 

OF OF 
P = ~ + (VF)g~, t = - ~  + (VF)v, [2.9] 

/~ --/~ = (VF)u~, [2.101 

where [2.8] was used. If pF - ~ fi~/~,, then it follows that 
~t 

The above identities are due to Truesdell & Toupin (1960). 

2.2 Conservation of mass 
The conservation of mass 

respectively, 
equations for the phase a and for the mixture are, 

~ + ~ V . ~  = ~, p + p V . v = 0 ,  [2.12] 

where ~ is the mass supply for phase a (the rate of phase change or the rate of chemical 
reaction per unit volume of the mixture). The compatibility condition on ~ between [2.12]x 
and [2.1212 is: 

? 

E ~ , = 0 .  [2.13] 
~t 

2.3 Balance of the linear momentum 
The balance of linear momentum for the phase a and for the mixture are expressed 

by the following equations: 

p i '=  V.T + pb~- ~,. 
[2.14] 

In [2.14]~, T, is the (partial) stress tensor, b~ is the external body force, and ~, is the 
momentum supply or source for phase a. The mixture stress tensor T, body force b, and 
momentum supply Pm in [2.1412 are defined, respectively, as follows: 

? 

ct 

ob-E ,G, 
¢t 

T 

- (e,u, + p,). 
ct 

[2.151 
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The momentum supply vector for the mixture ~,, arises due to both the interfacial forces 
(surface tension) and the non-local material response (see Dobran  1982a) which can be 
thought as representing the microstructural characteristics of  the mixture. When these 
effects are absent Pm= o. 

2.4 Balance of  the angular momentum 

When there are no body couples and couple stresses acting on the mixture, the balance 
of  the angular momentum for the phase ~t and for the mixture is reflected in the 
nonsymmetry of  stress tensors, i.e. 

M=-  T=-I '= r 

}, 

lq, l m -  ~ lq, l= = T - T z , 
ot 

[2.16] 

and lVI,, = O for a mixture with negligible interfacial forces and with the absence of  
non-local effects. 

2.5 Balance of  energy 
The energy equations for the phase 0t and for the mixture are, respectively, 

p~ = tr(TrVv) - lT'q + pr + (~., - V'Om), 
[2.171 

where g= is the internal energy, Ch is the heat flux vector, F= is the heat generation rate and 
g= is the energy supply or source for phase =. The mixture properties E, r, q and (era - v" 0,,) 
in [2.1712 are defined as follows: 

pE - p.E= + ~ p=u=. u= 

pr =-- ~ ~=F= -I- p,~=" u=] 

[2.181 
1 q --- =~ [~h - T=ru= +/~=g=u= + ~/~=(u=" u=)u=] 

7 ^ ~ 1 

For a mixture with negligible interfaeial forces and with the absence of  non-local effects 

~,. - v "  0 , .  = O.  

2.6 The second law of  thermodynamics 
The second laws of  thermodynamics for the phase ~ and for the mixture are expressed 

by the following equations: 

[2.191 

• ) ' 
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In [2.1911, g~ is the entropy, O'~ is the temperature, g~ is the entropy supply or source, and 
(~ is the entropy production rate of phase ct. The mixture entropy, entropy production rate, 
and entropy supply in [2.1912 are defined respectively as follows: 

ps = E 

), 

PC = E/~ '~  [2.201 
{I 

Y 

~t 

The conservation laws in the theory of multiphase mixtures summarized above differ 
from the conservation laws in the theory of mixtures with a negligible interfacial area in 
two important ways. First, in the former theory, the mixture source terms ~m, l¢lm, ~,, and 
gm do not vanish since they are a consequence of the interfaeial forces (surface tension) 
and of the non-local material response. It is this mechanism of the non-local material 
response in which the size of the averaging volume ~e" is buried, and the constitutive 
assumption should, therefore, account for the size of ~ .  The second important difference 
lies in the second law of thermodynamics. In the theory of multiphase mixtures, it is 
plausible to have a second law of thermodynamics for each phase, while in the theory of 
mixtures, only the second law of thermodynamics for the mixture as a whole gives the 
equilibrium results which are consistent with the classical equilibrium thermodynamics 
(Bowen 1973). 

3. S I N G L E  T E M P E R A T U R E  M U L T I P H A S E  M I X T U R E  W I T H O U T  T H E  P H A S E  

C H A N G E  

In a multiphase mixture each phase can be assigned a unique temperature; however, 
in this paper a mixture of a single 0"~ = 0, but nonuniform temperature, and without the 
possibility of undergoing a phase change, ~, = 0, will be considered. This special mixture 
is of significant practical interest nevertheless, and the basic concepts which are involved 
in the construction of constitutive equations for this simple mixture carry over to more 
general situations. Later on in this section an additional assumption is made that the 
mixture consists of fluids. 

3.1 The thermodynamic process for the mixture 
Before defining the thermodynamic process for multiphase mixture, it is useful to recast 

the second law of thermodynamics [2.1911 into a more convenient form. 
Eliminating the heat generation rate ~ in the entropy inequality [2.1911 by using the 

energy equation [2.1711, and setting 0"~ = 0 and ~ = 0, yields the following equation: 

- tO + trgr, v 3 oa . v o  o + ¢ + = >_. o. [3.1] 

Equation [3.1] is further reduced by using the definitions of Helmoltz potential ~'~, chemical 
potential tensor i~, potential ~P~, i.e. 

1 T ~ , -  ~ I  - -:-'I'. [3.2] 
P~ 
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and eliminating 0 using [2.11] wi th /~  = 0. Thus 

F0 
- 9~ - ~A6 I - tr(~,R,F¢~) - - f t .  li, - u~ .}~ +/~,/> 0, [3.31 

where 

IL -- rlj~0 u~ 

R~_-- e~ + u , - ~  + 0i,. 
[3.4] 

The variable/~ is introduced for convenience. Its interesting properties are summarized 
in section 3.4. 

The second law of thermodynamics for the multiphase mixture is obtained by summing 
up 0~ in [3.3], i.e. 

¢t el ¢l ct 

[3.5] 

The mixture source term 

R,~ = ~ R ,  = ~m - v.  ~,~ + 0g= [3.61 

follows from [3.4]2, [2.18], and [2.20]3. Equation [3.5] can be also obtained from [2.1912 and 
it is useful to study constitutive equations which are only restricted by the second law of 
thermodynamics for the mixture. 

Setting 3, = 0 in [2.1211, the conservation of mass equation for phase ~ can be integrated 
to yield 

/ ~ , d e t F , = ~ , ,  [3.7] 

where/~, in the density of phase ot in the reference configuration and it is assumed to be 
known. The density ~,, is thus determined from the knowledge of the deformation gradient 
F a • 

The final set of  equations which are utilized in this article to study the constitutive 
equations are the conservation of mass equation [3.7], linear momentum equation [2.1411, 
angular momentum equation [2.1611, energy equation [2.1712, and the second law of 
thermodynamics equation [3.3]. Since all the phases of the mixture have an identical 
temperature, there is no need to use the phasic energy equation [2.1711. 

The thermodynamic process (Coleman & Noll 1963; Dobran 1982a) for the multiphase 
mixture of a single temperature and without the phase change is defined by x = Z~,(X~, t) 
and by the following fields which depend on x and t: 

fi~, ~ ,  ~ ,  }~, l~l~, ~, r, ~h, .~, ~, . -v.}. , ,  0 and R~ [3.8] 

for ~ = 1 . . . . .  7. Furthermore, to define such a thermodynamic process, it is sufficient to 
assign the constitutive equations for 

~'~, [~, 1~, ~, gh, ~ , - v . ~ , ,  .g~ and /~ [3.91 

for ~ = 1 . . . . .  y, at X~ by the history of the fields x = lp~(Xp, t) and 0(x, t). The remaining 
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fields :~, 6~ and r in the list [3.8] are determined from the conservation laws [3.7], [2.1411 
and [2.1712, respectively. The entropy inequality [3.3] is utilized to place a restriction on 
the constitutive assumption. 

Notice that ~,~- v.~,, in [2.1712 is only restricted by the compatibility condition [3.6], 

and if ~,, = 0, then ~ , -  v.0n, = ~ / ~  and there is no need to specify the constitutive 

equation for it. 
Using [3.211, [3.2]3 and [3.411, we can replace the constitutive equations [3.9] by the 

following equivalent set: 

~ , , ~ , T , , , I ~ ,  ~,,,[~, ~,,-- v.~,,, and .~. [3.10] 

Note that although T, r can be calculated from T,, the reason for including l~I, (or TZ) 
in the above list of constitutive equations is that the entropy equation [3.3] contains this 
variable (after eliminating g~ by [3.2]3 and [2.1611 ) and, therefore, it places a restriction on 
its possible form. 

3.2 The constitutive assumption 
The constitutive assumption relates the thermodynamical state of the body ~ ,  to its 

thermokinetic state defined by Zo,(Xo, t) and 0(x, t), ~ = 1 . . . .  , y, at the present time as 
well as with the past history of the body. 

The constitutive equations for multiphase mixtures are expected to be of greater 
complexity than the constitutive equations for the mixture with a negligible interracial area 
due to the microstructural characteristics of the mixture. The finite interfacial area also 
introduces non-local material response into the theory, and the size of the averaging 
volume should, therefore, be accounted for within the constitutive assumption through this 
non-local representation. It is through such a mechanism that it should be possible to 
construct constitutive equations for different classes of mixtures. Clearly, this is an 
ambitious task which is well worth pursuing. 

In the present paper, the multiphase mixture is assumed to be represented by the 
constitutive assumption of the following form: 

(q/,,~,, ~, I¢/~, ~,, G,, ~.,,,-v'~,,,, ~)--f(O, FO, F#, ~,, GRAD r,, ;#, ~,). [3.11] 

In the notation of [3.11] each constitutive variable of the phase u, 0c = 1 . . . . .  y, depends 
on all other variables in the functional expression f For example, 

q/~ -- qs,(O, VO, F1 . . . . .  r, ,  ~1 . . . . .  ~ ,  G R A D  FI . . . . .  GRAD F,, 

~ i , . . . , g 7 , ~ 1  . . . . .  ~y), • = 1 . . . . .  y. [3 .12]  

The constitutive assumption [3.11] allows for heat conduction, VO; for viscous effects, 
~#; for density gradients, GRAD F#; for viscous drag, ~#; and for the virtual mass effects, 
~#. It excludes the propagation of thermal waves (the absence of ~), memory effects, and 
nonlocal material response. The included independent variables in the constitutive 
assumption are expected to yield constitutive equations of wide range of applicability. 
Equation [3.11] also satisfies the following five constitutive principles but not the sixth: 

(1) Causality 
(2)  Determinism 
(3) Equipresence 
(4) Material uniformity and homogeneity 
(5) Local action 
(6) Objectivity or material frame indifference 

MF VoL 10, No. 3---C 
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The principle of determinism requires that the past determines the future, and the 
principle of causality demands that the past history of the body determines all the 
conditions in the body at the present time. The principle of equipresence requires that there 
should be non a priori reason for discriminating any kinematical variable which enters into 
the different response functionals f in [3.11]. The material uniformity and homogeneity 
implies that there is a reference configuration for each body such that the response 
functionals are the same for all particles X, of the body ~ .  The principle of local action 
states that the response of a particle X~ is determined if the conditions are known in a small 
neighborhood of X~. In multiphase mixtures, the principle of local action is probably only 
valid for the dispersed mixtures. (The validity of the principle of the local action is 
equivalent to the neglect of the non-local material response.) 

A general discussion of the restrictions imposed by the principle of objectivity or the 
principle of the material frame indifference on the conservation equations of section 2, and 
on the constitutive assumption [3.11.], is presented by Dobran (1982a). Here, I will 
highlight only the main issues. 

For the phase ct, the principle of objectivity is stated as follows: Given a deformation 
function/~(X~, t), the change of frame ~ in E 3 to a frame ~b* in E 3 is expressed by the 
following equation:~f 

Z*,(X,, t) = e(t) + Q(t)I,,(X~, t), [3.13] 

where e(t) is an arbitrary time-dependent translation vector, and Q(t) is a time-dependent 
orthogonal linear transformation which represents the rigid body rotation, i.e. 

Q(t)Q(t)  r = I. [3.14] 

Under the change of frame [3.13], the defining properties of objective scalars, vectors 
and second order tensors are as follows: 

f*(x*,  t) = f ( x ,  t) 

y*(x*, t) = Q(t)y(x, t) 

M*(x*, t) = Q(t)M(x, t)Q(t)  r. 

[3.15] 

Using [3.13]-[3.15] in [3.11], Dobran (1982a) showed that the material frame indifferent 
form of the constitutive assumption is as follows: 

( 1 . . , ) 
qJ,, ~,, ~,, 1~,  ~ ,  5,, ~m - v'~m - ~ tr(M,,W,),  R~ - ~ tr(l(,l=W,) 

=f°(0 ,  VO, Fp, Dp, W p -  Wy, GRAD Fp, ~B-~y, ~ -  ~y-  2W~(~p- ~)), [3.16] 

and thus satisfies all six constitutive principles enumerated above. In [3.16], D~ is the 
symmetric and Wp is the antisymmetric part of  the velocity gradient, i.e. 

Lp -- Dp + Wp 

1 
D B -- ~ (Lp + L f )  [3.17] 

1 
Wp = ~ (Lp -- Lpr). 

tWithout the loss of generafity the origin of time in the frames ~b and ~b* is here taken to be the same. 
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3.3 Restrictions imposed on the constitutive assumption by the second law of  thermo- 
dynamics, and the equilibrium state for the mixture 

The restrictions imposed by the second law of thermodynamics [3.3] on the constitutive 
assumption [3.16] is obtained by substituting into [3.3] the material derivative of ~', from 
[3.12]. Using the identities [2.9] and [2.10], we have from [3.12] that 

where 

and 

9, = ~ -  (0 + VO .~.) + T ~ "  [(¢0) + (v(vo)),,,] 

f/0~',\r_. 
+ tr lta-'~p) IF, + C',l¢,-' "(', - '~')] } 

+ ~ ~,, . (~, - ,p)]} 

/ ~ , \  /my. \  .: %)]], 
+ t ~ ) .  r~, + 1,,,,,-, .(~,- ~,)] + t ~ ) .  L,, + ~,F,-' . ( , . -  

Gp -- GRAD Fp, 

[3.18] 

C{A ® a} - A,jB~ 

denotes the contraction of a fourth order tensor. Substituting [3.18] into [3.3] and 
rearranging, the second law of thermodynamics for phase • becomes 

\ a0 

, 0 ~ ,  r 

. . a ~ ,  Y a ~ , ,  

~ ~ V O  

p -  - -i a~ ,  . 7 . ra~" 

- ~ , F , -  b--~ [GRAD 

where 
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is the Ith component of a vector, and 

i l  ~lt#°t ) 0~'#= P~kK, I 

The necessary and sufficient conditions for the inequality [3.19] to be satisfied for 
arbitrary variations of nonindependent variables/~, (t~0), ~#, Iz(Iz0), F B, (';# and GRAD G# 
are: 

O0 + ~ "  = o, 0170 = o 

-~% = O, ~--,l~p = O, 0G---~ = O, 

[3.20] 

and thus 

q/, = ~+(0, F#, i#). [3.21] 

The conditions [3.20] reduce the second law of thermodynamics [3.19] to the following 
form: 

-- ~ O+-'---~'Vp--T'th~ + 0"-~- Ii~)-- ,r {:~F,-l"o+~e+l --not'O+ t -1- 

tr F#- F + (~ ~:0) - 

= ~(0, VO, F,, ~6, G~, v6, ~6)>t O. [3.22] 

Again, no confusion should arise in the notation of [3.22] for q~ which is similar to the 
notation of q~, in [3.12]. 

The Helmoltz potential qJ~ in [3.21] has interesting properties when the constitutive 
assumption [3.11] is relaxed as it is shown below. 

Case Constitutive assumption ~ (from [3.20] and [3.22]) 

A [3.11 ] ~'~(0, F#, i#) 
B [3.11] with 1~#= O, ~'~(0, F~, v) 

C [3.11] with G # = O ,  q~(0, F~, v) 
i,=o, 

D [3.11] with F#= O, qJ~(0, F~, v) 
G # = O ,  Ip--o ,  i # = v  

The case B above illustrates that when viscous, acceleration, and relative velocity effects 
are ignored in the constitutive assumption, then the Helmoltz potential for phase a depends 
only on the temperature and deformation gradient from the same phase since the 
dependence of q~ on the velocity v is not possible as it is shown in [3.16], and there is no 
need to exclude the dependence on G~ in order for the phase to be in an equilibrium. 
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The equilibrium state for the multiphase mixture is defined to be that state for which: 
(1) The entropy inequality [3.22] becomes an equality. 
(2) F0 = o (no temperature gradient), 1~ = O (no viscous effects), ~ = v (no diffusion 

effects), ~a = o (no acceleration effects); fl = 1, . . . ,  ~. 
From [3.22] it then follows that 

4,(0,  e 0  = o,  Fr, ~6 = O,  G~, ~ = v, i~ = o) =- ~ = 0. [3.231 

The above definition of the equilibrium state is consistent with the definition in the 
equilibrium thermodynamics, since in such a state no possibility exists for the temperature 
gradient, viscous effects, and diffusion effects. A mixture with these properties is by no 
means an ideal mixture. 

To examine the equilibrium state properties of the multiphase mixture in more detail, 
it is useful to utilize a method which is similar to Bowen (1973). For this purpose let 2 
be a parameter. Set VO = ;ta, 1~ = ;tA~, ~ = v + 2dp, Ip = 2t#, and substitute into [3.22]. 
Taking the account of [3.21], the result is as follows: 

0T~(0, Fr, v + 2d~) 
;ttp p d~p 

- ~-0~ "[ ~(0' ;ta' F'' ;tA'' G'' v + ;td'' 2t') + 0 0~v'(0' Fr' v + 2d') 2d' ] 0 0  

- t r  {/3,F~-IK,(0, 2a, F,, 2A,,  G,, v + 2d6, 2 t , )2&}  

- 2d~' ff.(0, 2a, F6, 2A6, G6, v + 2d~, 2t6) 

+/~(0,  2a, F6, ;tA6, G6, v + 2d~, 2t6) 

-:7:;, - ~'%- II-FS':<0' v +  d"yL 'It 0F, -i t- 2 (d~ - d,) ® 01/s"(0' li'~l' v "1" ' t 'd ' ) ]0, , l l  ), Ap} 

0,, 
=rb~(O, 2a, Fr, 2Ar, Gr, v + Adr, 2tr) >>.O. [3.24] 

Since ~b~ >i O, and ~ = 0 in the equilibrium state (cit. [3.23]), it follows from [3.24] that 
the stability conditions of the equilibrium state are: 

d~b~ dZ~b,[ 
d2 a-o = O, d22 [~-0 > O. [3.25] 

Carrying out the operation [3.25]t in [3.24] and requiting the arbitrariness of a, A B, dp and 
t# for ]7 = 1 . . . . .  ~,, we find the following sought-for equilibrium state properties: 

~ ( 0 ,  F6, v) 
0V# = o, fi,(0, o, F6, O, G~, v, o) --- o 

dP~(0, o, V~, O, G~, v, o) ~ , ( 0 ,  F~, v) 
d2 =o ,  aFp = O  f o r ~ ] ~ ,  

(~T.(0, F., v)) r 
~,£=(0, o, F~, O, G~, v, o) = - F,  ~ - , 

~,(0, o, F6, O, 66, v, o) = o. [3.26] 
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Further stability results of  the equilibrium state can be obtained by examining the 
condition [3.25]2. This, however, will not be pursued in this article. Notice that the results 
[3.26] are not presented in the frame indifferent form. When this is achieved, no 
dependence on the velocity v is possible (cir. [3.16]). 

The development of the constitutive equations so far is not restricted to either fluids 
or solids. My objective in the remaining part of this paper is to specialize further 
development of the constitutive equations to a multiphase mixture of  fluids. 

3.4 Multiphase mixture o f  fluids 
For a mixture of fluids, Cross (1973) demonstrated that a function of OF 0, 1~' 0, G0) can 

be replaced by the one of (tip, L B, V~0). Mathematically, this replacement has to do with 
the invariance of the response functionals in the constitutive assumption under a material 
symmetry transformation. Physically, this means that the response of the fluid to a given 
deformation history is the same when starting from any two configurations with the same 
density. This, clearly, can be looked upon as the definition of isotropic fluids, and the 
constitutive assumption [3.16] under these conditions, is reduced to 

1 A 1 ^ (ip=, ~=, 1"=, ]~i=, [1=, 5=, ~,.-v'ilm--~tr(lOJmW,),R=-~tr(M=W~) ) 
=fa(0,  VO, Po, Do, Wo - W~, V~o, ~o -- i,, ~0 - ~v -- 2Wv(¢o - iv)). [3.27] 

Utilizing the identity (Truesdell & Toupin 1960) 

a(det F=) = (det F=)F= -'r, [3.28] 
0F= 

and the conservation of mass equation [3.7], we can easily derive the following useful 
results: 

a -~F-ir a 
, 

~/~ - - I = - p~F~iG~arF=rk, 
axk 

[3.29] 

and it, therefore, follows that 

irOT= OT= v,- [Go] = v o. [3.30] 

Equations [3.29], [3.30], [2.6] and [3.17] reduce the second law of thermodynamics [3.22] 
to the following form: 

, - ~ v p ' V 0 - v ' k t h  + 0--~- ~ - tr{/~h~(D=-I- Wa)} - eh'~, + 
[3.31] 

_~: fl-_a~,, a~e,] } , a~'.=~=>~0 tr I + (i= -- i0) ® -~p (D 0 + W 0) - ~ (i= - i,)" (V~ 0) 
0 0 

We will return to this equation in the next section where the constitutive equations are 
studied in detail. 
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The independent variables in the equilibrium state properties [3.23] and [3.26] follow 
the order in the constitutive assumption [3.11]. When the order of the independent 
variables in the constitutive assumption [3.27] is utilized instead, these equilibrium state 
properties become 

Kx(0, o, :p, O, O, e:p, o, o) = o 

~(0,  o, :p, O, O, r:p,o,o)  = o  

0~'.(0, ~.) 
gx(0, o, ~p, O, O, v~p, o, o) = 

0~x 

/L(0, o, ~p, O, O, v~p, o, o) = o. 

[3.32] 

The variable _~ defined by [3.4]2 has interesting properties. From [3.6], [3.26]3, [3.31] and 
[3.32]4 it follows that it is a positive semidefinite function and vanishes in the equilibrium 
state. 

The chemical or Gibbs' potential/i, in the present theory is defined from [3.32]3, i.e. 

/ ixl -  i[,(0, o, ~p, O, O, o, o, o) [3.33] 

where it was used the fact that R~ in equilibrium is independent of V~p (cit. [3.32]3). 
Combining [3.33] with [3.2] results in the following equation: 

[3.34] 

where the (partial) pressure of phase g is defined as follows: 

r~l-= -Tx(0, o, ~p, O, O, o, o, o). [3.35] 

Combining [3.2]3, [3.32]3, [3.33] and [3.34] yields: 

c~(x(0, ~,) [3.36] 

and using this equation and equation [3.20]t, the differential of Helmoltz potential ~x(0,/~) 
becomes 

dex(0, ~,) = - ix dO + ~ dv,. 

Considering also the differential of [3.2]i and utilizing [3.37] we obtain 

Similarly, from [3.34] and [3.37] the differential of Gibbs potential/ix is 

1 
d~,(0, ,~.) = - ~, dO + _-- d~.. 

Px 

[3.37] 

[3.38] 

[3.39] 
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In the equilibrium state, the momentum equation of  phase ~ [2.1411 is reduced to 

-- VT~ + ,~,,5,, = o, [3.40] 

where [3.32]2 was used. The pressure gradient can be eliminated in this equation by utilizing 
[3.34], [3.211, [3.38] and by noting that VO - - o  in the equilibrium state, i.e. 

- V/~  + ~ = o. [3.41] 

This result shows that the chemical potential is not a constant in the presence of  body 
forces, and that 

/21 = " "  = / ~  = const. [3.42] 

if and only if there are no body forces acting on the multiphase mixture. 

4. LINEARIZED CONSTITUTIVE EQUATIONS 

In this section, a linearized analysis of  the constitutive equations for muitiphase 
mixtures is presented. Even though the linearized equations have a restricted validity, their 
form is already sufficiently complex (see below), and in many instances of  the practical 
interest, the computational restrictions dictate their lincarity and simplicity. The form of 
the constitutive equations is not arbitrary since they must satisfy the second law of 
thermodynamics [3.22]. The linearized constitutive equations are presented for (1) a 
multiphase mixture of  an arbitrary number of  phases, (2) for a multiphase mixture of  
highly dispersed fluids, and (3) the coefficients which multiply the independent variables 
in these equations are studied for a mixture of  two phases. 

4.1 Linearized analysis 

Linearization will be carried out  about  an equilibrium state with the properties VO = o, 

Dp = O, Wp = O, Izt~p = o, ~p = v and ~p = o. It is noticed that this equilibrium state is more 
restrictive than the equilibrium state of  section 3.3 in that it also assumes that V~p = o. 
This state will be called the reduced equilibrium state. 

In the linearized analysis all second and higher order terms of  the independent variables 
in the constitutive assumption [3.27] are neglected. A measure which relates the deviation 
from the reduced equilibrium state can  be defined through a quantity which is defined as 
follows: 

3' 3'-1 

E 2 "~ C1170 " 170 "~- ~ c2ptr(DpD p) -t- ~ c3ptr[(W B -- Wy)(Wp -- W3')] 

? ?- - I  7--1 

+ Y. + Y. c,p( p- - + Y. - 
# # # 

[4.1] 

When E = 0, [4.1] implies that VO = o, V~p = o, ~p = v, ep = o, Dp = O, and Wp = O for 
= 1 . . . .  , ?. Given an integer n, let the function of  (V0, Dp, Wp - W3', V/~p, ~p - ~,  ~p - ~)  

be denoted by O(E') with the property that [IO(E')II < ME" as E--,0, where [J...11 is the 
Euclidean norm, M is a positive constant, and E < 1. E < 1 implies that temperature 
gradients, viscous effects, density gradients, diffusion o f  species, and acceleration effects 
are small. The coefficients Cl, c2p, c30, C4p, Csp and c6p in [4.1] are suitable reference variables 
which-allow E to be expressed in a nondimensional form. 

To obtain the constitutive equations, the variables on the left side of  [3.27] are 
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expanded in a Taylor series about the reduced equilibrium state in terms of  the independent 
constitutive variables on the fight side of  [3.27]. Considering first the heat flux vector field 
fi~, we have: 

= G~(0, o, ~ ,  O, O, o, o, o) + ~ - ~  ( O , o , p , , O , O , o , o , o ) V O  

+ ~ (0, o, Po, O, O, o, o, o)D~ 

+ Y'~ 0 tw~-  w,) (0, o, ~,  o,  o, o, o, o)0V, - w,) 

+ ~ O (i~ - g, - 2W,(V~ - ",)) o,/~o, O, O, o, o, o)(~ - ~,) + o(e2) [4.2] 

Note that (1) the first and fifth terms on the fight side of  [4.2] are equal to o because of  
[3.3211, and (2) the function f a  in [3.27] is isotropic. Since odd order isotropic tensors 
change signs in an improper orthogonal transformation (Spencer 1971), all odd order 
tensors in [4.2] must vanish, i.e. a[ i , /0Dp--O,  0l i ,J0(Wp- WT)= O, and the even order 
isotropic tensors must have the following representation: 

(O[~/OVO)(O, o,/~o, O, O, o, o, o) = - r=(0, ~o)I 

(0~/0(ip - ~,))(0, o, ~¢, O, O, o, o, o) ffi - (~p(0,/~o)I [4.3] 

(0fi~/0(Ip - i, - 2W,(ip - ~)))(0, o, ~,, O, O, o, o, o) = -v:p(O, ~:)I. 

Taking account of the above conditions, [4.2] is reduced to 

~,-I  ~--1 

= -- -- p,)(vp -- v,) + o(~ ), [4.4] 
# 

where it is understood that K~(0,/~¢) = r~(0,/~ . . . . .  ~) ,  and similarly for ~p, v~p, and for 
all other coefficients in the constitutive equations below. 

A similar analysis which gives [4.4] also gives the momentum supply for phase ct 

7--1 ?--1 

~, = - ~,(0, ~ ) v o  - F. ~,,(0, ~ ) ( % -  ~)  - F. ~ 0 ,  ~)(+p - +,) + o(d), [4.5] 
B P 

where [3.32]2 was used. 
The chemical potential tensor ~ ,  appears in the entropy inequality [3.31] and it is, 

therefore, natural to obtain a constitutive equation for it and replace the stress tensor 1'~ 
and the Helmoltz potential ~ ,  in [3.27] by a new set ~,~:~ and ~',. The new set of  variables 
is equivalent to the original set as can be seen from [3.2]2. Expanding ~ [ ~  in series and 
using the fact that it is a second order isotropic tensor, its representation is as follows: 

7 

/5~I~= = f i ~ ( 0 ,  o,/~o, O, O, o, o, o) -- ~ [20(0,/~=)(trDp)I -F 2/~p(0,/~)Dp] 
P 

y- - I  

+ 2 )-" ~.p(0, ~.)(Wp -- W~,) + O(~ 2). [4.6] 
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Using [2.16],, [3.2]~ and [4.6], the angular momentum supply for phase a becomes 

7--1 

I(/l~ = '[', -- ~-r= :5~I~ -- :~l~r = 4 ~, ¢p~#(O, fi¢)(W# - W,) + O(eZ). [4.7] 

The representation of ~ and /~  is needed within an order of~ 2. This is clear from [3.31] 
if the left side of this inequality is to have a representation within an O(~). Taking into 
account that (1) ~ = ~(0 ,  t5#, ~ , -  ~y) in a frame indifferent form, (2) ~ = ~u~(0, ~ )  in 
the reduced equilibrium state, and (3) the fact that ~u has an isotropic tensor represent- 
ation, we have 

? - 1  

~,  = ~(0 ,  :~) + ~ r/~(0, ~5~)(~# -- ~,).(~a -- ~,) + O(~'). [4.8] 

and thus 

~ = O(~ ~) for ~ #/~. 

The representation of the entropy supply/~ in [3.27] in terms of vectors and tensors 
is as follows (see also Truesdell & Noll (1965) for the representation theorems): 

1 ^ ? ? ? ~.-~tr(M~W~)= ~ cog,~(tr D#)+ ~. co~,~(tr D#D~)+ ~ 
#~,~ #~,~ 

y - I  

+ 2 co].~s tr[(W# -- W,)(W, -- Wr) ] 

co], #~( tr D#)(tr D~) 

? ? - 1  

+ coo'VO, gO + gO. F. o)~,# F'~# + VO. }-' oJ],#(~# - ~,) 
~ # 

y - I  ? ? ? - 1  

+ go. F~ co~,p(~# - ~,) + ~ co~.~F%, e~, + Y. 2 co~,~e:# (~  - ~0 

? ?--1 y - 1  

coT0, ~(~# - ~0" (~  - ~)  

? - t  ? - 1  

+ ~. co~1.#6(v# - v,)'(~6 - ~,) + ~', co~2.~(~# -- ~,)'(~6 -- ~,) + O(e3), [4.91 
#,6 #46.6 

where the coefficients co depend on 0 and ti,, o = 1 . . . . .  ?. 
Before studying the restrictions on the coefficients which appear in [4.4]-[4.9] with the 

second law of thermodynamics, let us obtain the constitutive equations for stress tensors, 
entropy, heat flux vectors and energy. 

Eliminating the chemical potential tensor between [3.2]2 and [4.6], and using [3.32]3, 
[3.34] and [4.8], the stress tensor for phase • becomes 

V ? - 1  

~ = - r~,I + ~ [2,#(tr D#)I + 2#~#D#] + 2 ~ ~p~#(W# - W,) + O(E2), 
# # 

[4.1 o] 

and from [2.15]t, the stress tensor for the multiphase mixture is expressed by the following 
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equation: 

T=-  (~ ff,)I + ~ [(~ 2,,)(tr D,)| + 2(~ #,#)D#] + 27~ ' (~ q~,#)(Wp-- W,) + O(E 2) 
[4.111 

From [3.2011 

~ =  _ 1 0 ~'=(0, .5#, ~p -- Cy) 
.5= O0 ' 

and utilizing [4.8], the entropy of  phase = is 

~= = 1 a~=(O,  .5=) + O(E2). [4.12] 
.5, O0 

Substituting this expression and [4.4] into [3.4],, the heat flux vector for phase ct is obtained, 
i.e. 

7- - '  ?--1 

~h = - , q v o  - Y~ ~,p(vp - v,) - ~ ,,,~(+p- +,) - .sAOu, + o(d) [4.13] 

The internal energy of  phase = is obtained by substituting [4.8] and [4.12] into [3.2],, 
i.e. 

g, = ,/7,(0, .5,) - o a ~ , (o ,  .5,) O0 + O(E 2) = g,(O, .5,) + O(e2). [4.14] 

This result is important since it implies that the internal energy of  phase ct is to a first order 
approximation equal to the internal energy of  the same phase in the equilibrium state. 
The energy of  multiphase mixture is obtained from [4.14] and [2.18]v The result is: 

7 p~ = ~ .5=g,(0, .5,) + o(E2). [4.15] 

The heat flux vector for a mixture follows from [2.1813, [4.10], [4.13], [4.14], [3.34] and 
[3.2],, i.e. 

q = - ( ~  x,)e0 - ' ~ '  (~( ,~)(~p-~,)- '~ '  (~v,~)(~-~0+~.5~=u,+o(d) • [4.16] 

4.2 Restrictions imposed on the linearized constitutive equations by a mixture of  highly 
dispersed fluids and by the second law of  thermodynamics 

I will define a highly dispersed multiphase mixture by the following two characteristics: 
(1) Absence of  non-local effects. 
(2) The interfaeial area is negligible. 

It then follows from Dobran  (1982a) that the momentum supply for the mixture Om = O, 
the angular momentum supply for the mixture l¢lm = O, the energy supply for the mixture 
E, = o, and the entropy supply for the mixture ~,, = o. The above definition of  a highly 
dispersed mixture requires, for example, that the number of  bubbles in a fluid volume 
approaches zero or a constant as their size (diameter) approaches zero. This definition, 
then, corresponds to the void fraction of  the dispersed phase approaching zero. 
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Substituting [4.7] into [2.1612 and requiring that lqlm = 0 we obtain 

Y 

E , ~ , ~  = o; ~ = 1 . . . .  , ?  - 1. 
ot 

[4.17] 

Similarly, using [4.5] in [2.1513 with [~= = o, and [4.9] in [3.6] with/~m = O, we have: 

Y Y 

Y 
EC.Oo '~ = 0 
~t 

Y Y 

E ( D ~ , ~  = E ( - D 9 . ~  = 0 ;  f l  = 1 . . . . .  ? ;  3 = 1  . . . . .  ? - 1  

E ~oI.~ = E O~o, ~ = E o ,~ .~ ,  = o; 
~t ot 

f l ~ < d i = l  . . . . .  ? - 1  

E , o l . ~  = E o ~ 2 . ~ - E o , ~ . ~  = 0; f l ~ < 6 = l  . . . . .  ? 
ct ~t 

Y 
~ o ~ n . a , - O ,  f l = l ,  . , ?  1; 3 = 1  . . . . .  ? - 1  
~t 

Y 

E°95, ,  E 6.B O; fl 1 . . . .  ? - - 1 .  [4.18] 

For'the 2-phase mixture, the coefficients in [4.17] and [4.18] are reduced to the following 
form: 

tPll + tpal ---- O, Yl + 72 = O, 

~n + ~21 = O, An + An = O, co01 + oJ0 ~ = O, 

oJ~l , ,+  2 = 0 ,  ~o~,1+Oo,1=0,  +O~o2,2 O, (_.011,11 2 1 (.00, 2 

c 0 ~ , i + 0 ~ , 1 = 0 ,  0 ~ , 2 +  2 o, i + c o ~ .  o, (,04,2 ~ (--08,11 , 

1 + ~ o ~ 2 1 = 0 ,  1 + c o ~  = 0 ,  1 0")8,21 , ('09,11 , I I  (-D 9, 21 "+" OJ ~, 21 = 0  , 

1 + c o ~ n = O ,  1 + ~ o  = 0 ,  ~ 2 = 0 ,  ~)~.. , c010,. , .  c0,2,. + c0|2,.  

i + 0 ~ . = 0 ,  0~1,12+0-)~.12 o, 1 2 _ 0 3 1 , 1 1  , ---~ 0.)1,22 "+ (.D 1,22 - -  O, 

I + ("02 11 = O, 1 = O, I (-02,22 = O, (-'02,11 , ('02,12 -1-- 0.)~12 092,22 "-J¢- 

1 +a)7 ~ n = O ,  1 2 O, ' 2 0J7,11 , t07.12 + (-07,12 ---- 0)7.22 -I- 097,22 = O, 

o,~., + o,,~ i = 0, o4.1 + o,~., = 0 .  [4.19] 

The 56 coefficients for the 2-phase dispersed mixture are related by the 28 equations in 
[4.19]. However, not all of  the remaining 28 coefficients are independent, since the second 
law of  thermodynamics [3.31] introduces additional restrictions. These restrictions are 
obtained by substituting the constitutive equations [4.4]--[4.9] into [3.31] and requiring that 
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this inequality be satisfied for all variations of the independent variables in the constitutive 
assumption [3.27]. The details of this analysis are presented in appendix A, and the desired 
necessary conditions (which are also suj~icient if O(E 3) = 0 in [AID are expressed by [A4], 
[A6], [A8], [A 10] and [A15]. These conditions and other consequences of the present theory 
are discussed in the next section. 

5. DISCUSSION 

Constitutive equations for multiphase mixtures have not been systematically studied 
in the past. Notable attempts have been those of Ishii (1975), Drew (1976), Drew & Lahey 
(1979), Drumheller & Bedford (1980) and Passman et al. (1983). 

Ishii obtained the constitutive equations for stress tensors and heat flux vectors by time 
averaging of the local constitutive equations of each phase. The time-averaged form of 
these equations are then expressed in terms of transport coefficients and independent 
time-averaged kinematical and thermal variables. In this approach, important information 
is lost, since the principle of equipresence of the constitutive equations is a priori 

compromized. Drew and Drew & Lahey adopted a postulatory approach which is guided 
by the principle of objectivity in the constitutive assumption and they utilized Cauchy's 
representation theorem for isotropic tensors to obtain the form of some constitutive 
equations (for momentum supply and stress tensor). Drew (1976) also proposed that the 
2-phase mixture should be governed by the principle of phase separation and by the 
principle of local dependence on dispersed phase variables. The former principle states that 
the bulk phase variables ([~, 1',, ~ ,  etc.) should depend only on the variables from the same 
phase, while the interphase variables (~, ~,, etc.) should depend on the variables from all 
other phases. The principle of local dependence on dispersed phase variables of Drew states 
that the gradients of dispersed phase variables should be omitted from the constitutive 
equations. Both of these principles are very restrictive and they might only be correct in 
some special circumstances. It will be shown below that the principle of phase separation 
in the present theory is likely to be correct for some constitutive equations close to the 
equilibrium state. 

The variational formulation of Drumheller & Bedford (1980) yields, in addition to the 
equation of motion of each phase, the balance equations for microstructural properties of 
the constituents. For two-phase bubbly flows these equations yield the Rayleigh-Plesset 
equation for the dilatational motion of a bubble (Plesset & Prosperetti 1977). Similar result 
for the bubble motion was obtained by Passman, Nunziato & Walsh (1983) from their 
postulated balance equations of microstructural characteristics of the mixture (balance of 
the equilibrated force). Drumheller & Bedford also studied the equilibrium state consti- 
tutive equations for immiscible or multiphase mixtures by: (1) using a variational 
formulation; (2) using the second law of thermodynamics or balance of the entropy 
equation for the mixture as a whole with the absence of entropy source term (~m--0 in 
[2.1912); (3) assuming that the principle of phase separation applies to the Helmoltz 
potential; (4) assuming that the independent variables in the constitutive assumption are 
both partial and true densities; and (5) that the volume fractions form a constraint 

condition in the variational formulation (~ Y'~/~ = 1). Their equilibrium results for the 

heat flux vector ~ ,  momentum supply ~ ,  and energy supply ~, agree with the present 
results [3.32]. However, their result that #~ . . . . .  /~ is in variance with the equilibrium 
thermodynamics when the body forces are included in the theory (cit. [3.41]). For fluid 
mixtures, Drumheller & Bedford found that the Helmoltz potential of each phase depends 
on the true density and temperature of the same phase. While this result is physically 
appealing, it does rest on the assumptions enumerated above where some of them are open 
to criticism (Dobran 1982a). An immiscible mixture of two incompressible fluids was also 



294 FLAVIODOBRAN 

studied by Sampaio & Williams (1979) using an entropy balance equation for each 
constituent with the entropy interaction or supply term between the constituents absent 
(this would correspond to g, = 0 in the present theory). Their constitutive assumption for 
the mixture of two constituents involves v~ - v 2 ,  Vv~, IZv2, ~ / " F ,  0, I7(~'~De'), and V0. 
The results of Sampaio & Williams for the Helmoltz potential give ~,, = ~,,(0, ~ , / ~ )  which 
is in close accord with the present result of 47, = 47,(0, 15,) when the true densities are 
assumed to be constant (note that 15, = ~ , ~ , / ~ ,  where ~, is the true density). 

Passman et al. (1983) utilizing the Goodman & Cowin's (1972) field equations of 
multiphase mixtures utilized: (1) the entropy balance equation for the mixture as a whole; 
(2) separate balance equations describing the microstructural characteristics of the mixture; 
and (3) the principle of phase separation (similar to that of Drew (1976) discussed above) 
to study the constitutive equations of fluid mixtures. Denoting by ow, an array of 
independent variables for the use in the constitutive equations, 

o,, u,, i ) , ,  vo,), = 1 . . . .  [5.1]  

and by using the above assumptions and the procedure followed in this paper to obtain 
restrictions from the entropy balance equation, Passman, Nunziato & Walsh obtained the 
following results: 

77, = o , ,  

077, 
= - ao--7'  o o ,  

[5.2] 

Clearly, the results for ~, and ~, retain the features of classical thermodynamics. The free 
energy or Helmoltz potential, 47,, depends, however, on both the volume fraction ~w/~  
and its gradient in addition to the true density ~, and temperature 0, (in classical 
thermodynamics the free energy would have the form 47, = 47,(0, ~).  This dependence is 
to be contrasted with the results of the present analysis as expressed by [3.36] and [3.37] 
where 47, = 4,(0, ~,). 

The equilibrium state properties of the present theory were presented in section 3.4. 
Of particular interest in this theory is that the (partial) pressure 3, and (partial) density 
~, enter into the theory instead of "true" pressure and "true" density. The reason for this 
is that the conservation and balance equations of section 2 contain these partial variables 
(notice that true densities do not enter into the governing field equations), and to include 
into the constitutive assumption [3.11] the variables such as volumetric fractions and 
"true" densities does not appear reasonable, since the only permissible kinematic variables 
which can enter into the constitutive assumption are those which are contained in the 
conservation and balance equations. In the postulated theories of multiphase mixtures 
discussed above, the volumetric fractions and true densities are included as the independent 
variables in the constitutive equations because of the presence of additional balance 
equations expressing the microstructural characteristics of the mixture. The conservation, 
balance and constitutive equations presented in the paper yield a closed system of 
equations since the coefficients y,, ~B, 3,p, tp~p, ~ ,  #~p, r~, ~p and v, B for ~, fl = 1 . . . .  
y depend on 0, 151 . . . . .  15y. As discussed in more detail by Dobran (1983), the theory 
constructed in this manner requires also the knowledge of the fundamental equation such 
as (,(0, ~ )  which unfortunately is not known to a significant degree. Since the fundamental 
equations of Passman et al. (1983), and Drumheller & Bedford (1980) as well, are also not 
known to a significant degree, it is, therefore, not clear at the present time whether the 
microstructural characteristics of multiphase mixtures should be modeled through the 
constitutive equations or through the additional balance equations. 
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The constitutive equation [4.5] for the momentum supply of phase a accounts for three 
y - I  

effects. The term Y~ ¢~p(¢#-iv) accounts for the viscous drag and diffusion of phases, 
# 
? - I  

whereas the term ~ A~(~#- ~v) accounts for the virtual mass effect. Although the 

difference in accelerations (~#- ~y) is not frame indifferent (cit. [3.27]), this form is 
nevertheless correctly represented in [4.5] in the linear approximation. The temperature 
gradient term in the momentum supply is the Soret effect, and it accounts for the diffusion 
of phases because of the temperature gradient. Its form in [4.5] is similar as in a single 
phase mixture of different constituents. From [A. 15]2 for a 2-phase mixture, it is sufficient 
(and also necessary if oJT0, u = 0) that ~u >/0 and ~21 ~< 0 (compare this result with [5.8] 
below). The values of?2 and A,p are restricted by [A1516 and [A1517. If, however, the heat 
flux vector [4.13] excludes the dependence on ¢# - ~? (i.e. ~a = 0), and if in [4.9] cos.a~ -- 0, 
then from [A1516 it is sufficient that 

:,) ) 
~0 ?, = 0. [5.31 

Using [4.12], for ~ = 1 it is obtained that 

- {~I( 0, Pl) 
",+'t = Pl aO = - / ~ 1 ~ '  [5.4] 

and for ~¢ = 2 

_ o ~ ( o ,  ~2) 
~'~ = P~ a0 = - ~:'~" [5.5] 

Equation [A.15]. with o :  = 0 ,  yields as a sufficient condition that 11,11 

a , , ( < + + , , - - ~ )  = 2,~T,. [5.6] 

From a physical point of view it should be permissible to argue that the effect of diffusion 
of phases is to increase their free energies. In [4.8] therefore, ff~ >I 0 and the following 
conditions must be true: 

Au t> O, A~l ~< O. [5.7] 

The first condition is consistent with the result [5.9] discussed below. It should be noted, 
however, that by excluding the dependence of heat flux vector on ~p - Vy is probably not 
very realistic. 

Anderson & Jackson (1967), Ishii & Zuber 0979) and Drew & Lahey (1979) have 
proposed the momentum supplies which are similar to [4.5]. In addition to the presence 
of viscous drag and virtual mass effects in the momentum supply expression, Anderson 
and Jackson also argue the presence of the buoyancy term in this expression. The buoyancy 
effect is proportional to the density gradient, and the theory presented in this paper allows 
for this effect through the term V~p in the constitutive assumption [3.27]. In the linear 
approximation of the momentum supply [4.5], no dependence on the density gradients 
arises. The buoyancy effect in [4.5] would arise if we were to study the constitutive 
equations using the second law of thermodynamics for the mixture and not for each phase 
as I have used above. (I leave to the reader to prove this result.) The second law of 



296 FLAVIO DOBRAN 

thermodynamics for only the mixture is, however, not restrictive enough as it is discussed 
by Dobran (1982a). The virtual mass effect in ~ proposed by Drew & Lahey (1969) 
depends on the difference of mixed accelerations (a¢~/~t + ( V ~ ) ¢ p  - aCl~/dt - (VCla)¢=) and 
not on ~=- ~p. Their reasoning for choosing the difference of mixed acceleration is that 
it is frame indifferent while ~=- #p is not. To me, the mixed accelerations are physically 
not very meaningful, and it is for this reason that the constitutive assumption [3.27] 
contains only the "true" accelerations ~=. In the linear approximation, the coefficients y=, 
~=p and A,a in [4.5] depend only on the temperature and densities. When, however, we 
consider the complete representation of ~, in terms of its independent variables in [3.27] 
by using the Cauehy's Representation Theorem (Truesdell & Noll 1965), then the 
coefficients in [4.5] would also depend on the invariants of tensors in this representation. 
For example, for a 2-phase dispersed mixture Ishii & Zuber (1979) consider 

.3 . Co 
[5.8] 

where the subscripts c and d refer to continuous and dispersed phases respectively (i.e. 
= = d and ~, = c in [4.5]), ~c is the true density,t ad is the void fraction, rd is the effective 
radius of the dispersed phase, Ca = Cd(2~cr,4v~ -- vcl//~, ad) is the drag coefficient, and #~ is 
the viscosity. It is clear from [5.8] that the representation of ~,~ in [4.5] in terms of the 
temperature and densities of phases is, in general, not adequate. But if we admit its 
dependence on the invariants of the variables in the constitutive assumption other than 
the temperature and densities, then we should also admit higher order approximations of 
~, in [4.5]. Drew & Lahey (1979) discuss these second order contributions to ~, which 
clearly belong to the theory of non-linear constitutive equations for multiphase mixtures. 
The virtual mass coefficient Add for small =d is given by Drew and Lahey as 

Add = =~o~Cv~ad), [5.9] 

where CvM ~-- 0.1--0.5. 
The constitutive equation [4.13] for the heat flux vector of phase g contains the expected 

terms. The first term which is proportional to the temperature gradient is the Fourier  effect, 
and from [A1511 it is sufficient (and also necessary ifo~0 = = 0) that x= i> 0. The term in [4.13] 
which is proportional to the difference in velocities is the D u f o u r  effect and it accounts for 
the heat flux which results from the diffusion of phases. The heat flux terms in [4.13] which 
are proportional to the differences in accelerations arise due to the non-uniform acceler- 
ations and velocity fields of the phases, and are probably not very significant when 
compared to the temperature gradient term. ~,~ are restricted by [A15k (it is sufficient that 
~=l/> 0), while v=l are not restricted by any of the inequalities in [AIS]. 

A constitutive equation for the heat flux vector was also proposed by Ishii (1975). He 
time-averaged the local form of the Fourier law for each phase and obtained two 
contributions to the heat flux vector: one which is proportional to the temperature 
gradient, and the other which is proportional to the concentration gradient which Ishii 
attributes to the Dufour effect. While such an interpretation of the Dufour effect is 
possible, the interpretation in this article is consistent with the interpretation in the theory 
of mixtures with negligible interracial area (Bowen 1973). 

The constitutive equation for the stress tensor of phase = is expressed by [4.10], and 
its 2-phase coefficients ~p,/~p and cp,p are restricted by [A6], [AS] and [A10]. As it can be 

tThe densities in this article can be identified with true densities and void fractions in 2-phase literature by 
noting that ~, = =c~., P~ = "~.s  ~ + ~c = 1, where ~, and ~d arc true densities of  the continuous and dispvrsed 
phases, respectively. 
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seen from [4.10], the principle of  phase separation of  Drew (1976) does not necessarily 
apply within the framework of  the present theory. Very close to the equilibrium state [3.23], 
where it is possible to argue that the supply ~ is equal to zero, [4.9], [A6], [A8] and [A10] 
give: 

2 2 ~.H + ~/~. ~> O, ~+~ /~>~0 ,  

2 2 
,~12 "~- ~ ]~12 = 0, 421 "3u ~//,21 -'~ 0, 

/zu >1 0, #22 I> 0, /h2 =/z21 = 0, 

~011 ~ 0,  ~012 ~< 0, -- 4¢PlICPi2 I> (¢Pll - -  ~012) 2" 

[5.10] 

From [5.1013.4.7 it, therefore, follows that 2~2 = A2~ = 0, and from [4.10] the stress tensors 
for a 2-phase mixture become 

T~ = - ~ I  + 2n(tr  D~)I + 2#nD~ + 2~pn(W~ - W2) + O(~ 2) 

T2 = - ~21 + 222(tr D2)I + 2#22D2 + 2tP21(Wl -- W2) + O(~2). 
[5.11] 

By the definition in section 4.2, the highly dispersed mixture is characterized by a vanishing 
angular momentum tensor l(4m or by the condition [4.1911. In this case, we have in [5.11] 
that tp2~ = - tp.. Ifl~, is symmetric, then from [4.7] it follows that 1(~ = O or ~Pn = 0 and 

(P21 ~" 0. 

The present theory yields, therefore, the simple results 

Tl = - ~l l  + 2n(tr  D1)I + 2#uD! + O(E 2) 

T2 = - ~21 + ,[22(tr D2)I + 2/~22D2 + O(~ 2) 
[5.12] 

if (1) 1', are symmetric, and (2) ~ = 0. Drew's (1976) constitutive equations for stress 
tensors are similar to [5.12] and for the continuous and dispersed phases he assumes 
respectively that 

I'c = (1 - otd)[--pI + 2E(otd)(tr D31 + #D(otd)Dc] 

Td = --p0t,J, 
[5.131 

where otd is the void fraction of  dispersed phase and p is the pressure. Comparing [5.12] 
with [5.13], we have nc = (1 - ot3P, nd = otdT, ~ ffi (1 -- otd)~E(ad), 2/Z~ = (1 -- otd)#D(otd), and 
2 ~ = # ~ d = O .  Notice that the coefficients in [5.12] depend on the equilibrium state 
properties (0, ~ -- (1 - otd)~c, and Pd = otd~d) and thus there is some truth in [5.13] that the 
coefficients E and D depend on otd, as assumed by Drew. Comparing the present results 
with the 2-phase stress tensors of  Ishii (1975) is not straightforward unless the present 
results are also time-averaged. If, however, the turbulent contributions are neglected in the 
model of  Ishii, then his stress tensors are similar to [5.12] with ~t ffi ottPt, tr Dt ffi O,t 

IAI = otdh, ~'l = ~ i / Y ' ,  and similarly for phase  2. 
It is clear from the above discussion that the constitutive equations for stress tensors 

in the present theory are very general, and whether or  not the full generality o f  [4.10] is 

tlshii assumes that the 2-phase mixture is incompre~ble. In the present theory, the in~nprenibi l i ty  of a 
phase does not imply that trD, --0 since ~, ~t0 (tit. [2.12],). 

MF Vol. I0, No. 3---D 
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required, needs to be ascertained from very careful experiments. The form [5.12] is already 
sufficiently simple, and it should be possible to experimentally find the dependence of 2H, 
222,/an, and #22 on 0, Pl, and t~2. It should also be noted that time averaging of [5.11] will 
give rise to turbulent contributions in the stress tensors which are more complicated than 
in a single phase situation. (In single phase flow, the stress tensor cannot depend on the 
spin rate W--at  least as long as we accept the principle of the material frame indifference.) 
Time averaging of the conservation:laws of section 2 produces a set of averaged equations 
which are significantly more complicated than the single phase conservation laws, and the 
study of turbulence in multiphase mixtures is also significantly more difficult than in the 
single phase situation. 

It is very common in the 2-phase flow literature to formulate theories in terms of the 
volumetric fractions. Except for the case when both phases are incompressible, I do not 
see that such a formulation yields any simplicity, and in the present article, I have found 
no need for formulating the theory in such a manner. All the results of the present theory, 
however, do reduce in terms of the volumetric fractions Sr /W by noting the functional 
relationship tT~= ~ / ~ e ' .  G~ is the "partial" and ~,  is the "true" volume-averaged 
variable, and they are defined in section 2. A further discussion of linearized constitutive 
equations for a special case of two-phase flow is presented by Dobran (1982b). 

The constitutive equations derived in this article also apply to the porous media when 
the elastic properties of the porous matrix are neglected. To illustrate the consistency of 
the theory with Darcy's law it is sufficient to consider the flow of an incompressible fluid 
of phase ~t through a rigid porous matrix. The porosity of this matrix is t~ = ~ / ~ ,  and 
the true density of the fluid is ~,. Since the phase ~t is considered to be incompressible, we 
have from the conservation of mass equation [2.1211 

I 7 .~, = 0, [5.14] 

and since tr ( F ~ ) =  F . ~  =0,  then also tr D~=0, and the stress tensor from [4.10] is 
reduced to the following form: 

T~ = - ~.~,I + 2#aD, + O(~ 2). [5.15] 

The momentum supply for phase a is obtained from [4.5] by neglecting virtual mass and 
Soret effects, and by assuming that the porous matrix is stationary (¢v = o), i.e. 

~, = - ~ ,  + o(E2). [5.16] 

Substituting ~, = ~ J ( ~ d # )  and ~ , =  ~d(#d~e'), [5.15] and [5.16] into the momentum 
equation [2.1411 results in the following expression: 

[5.17] 

Equation [5.17] is the desired result. Its similarity with the classical form of Darcy's 
law (Scheidegger 1974) is evident when it is assumed that ~, = o, F2~, = o, and when the 
coefficient ~ / ~ ,  is identified with ~ / k , ,  where/z, is the viscosity of phase ,t and k~ is its 
permeability. The inclusion of the term F~ ,  into the classical expression of Darcy's law 
is discussed by Neale & Nader (1974) in order to account for the boundary layer effect 
which physically occurs near a solid boundary and near the interface of a porous medium 
and a fluid. The coefficient /au/~, in [5.17] appears to be satisfactorily related to the 
viscosity of phase or, #,(cit. Neale & Nader 1974). 
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To account for the compressibility of the porous medium an account must be taken 
in the constitutive assumption [3.27] of the elastic properties of the matrix. 

6. C O N C L U D I N G  R E M A R K S  

In this article, a linearized theory of the constitutive equations for multiphase mixtures 
of fluids was presented. This theory is based on the conservation and balance equations 
of multiphase mixtures proposed by Dobran (1982a). The constitutive assumption 
included the temperature gradient, velocity gradients, density gradients, and accelerations. 
No allowance is made in the theory for multiple temperatures, phase change, memory 
effects and non-local effects. Inclusion of multiple temperatures into the theory is necessary 
for mixtures where phases exhibit significant thermal nonequilibrium, and the inclusion of 
non-local effects should be important for mixtures where the interfacial areas are large or 
for mixtures with significant microstructural characteristics (non-dispersed mixtures). 
Many of these effects can be accounted for within the analysis without conceptually 
changing the basic methodology of this article. 

The constitutive equations were obtained for an arbitrary number of phases, and these 
equations reduced to some special results from previous investigations. The coefficients in 
the linearized constitutive equations are found to be consistent with the results from 
models based on the experimental data. The experimental data are lacking, however, to 
establish the values of the viscosity coefficients ~p and/~p, and, consequently, the analytic 
modeling of multiphase flows is precluded by a set of parabolic differential equations. Since 
the parabolic system of equations requires more boundary conditions than the now widely 
used first order system of hyperbolic equations, the solution of the former system of 
equations should yield more meaningful results than the solution of the latter system of 
conservation and balance equations. 
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A P P E N D I X  A 

The coefficients in the constitutive equations [4.4]-[4.9] are restricted by the second law 
of thermodynamics [3.31], and it is this restriction which is studied in this appendix for 
a 2-phase mixture of fluids. For a mixture of 3 or more phases, analogous procedure can 
be carried out. 

Substituting the constitutive equations [4.4]-[4.9] into the second law of thermo- 
dynamics [3.31], and utilizing [2.7], [2.8], [3.32]3, [3.33] and [3.34], the following equation 
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is obtained: 

+ [# , . !  l {~3', .  + 2# . ,6-}  'r { f D o  3 3 :  ('r D , ) I ] [ D .  

: , ' , . ,  

3+:,,o.>11) 1 

.)(t-,.,)+.,.,).,, 

+ 

^. -" -" ) ]  s + [ ~ . # , ] V ~ # . ~ + [ ~ 2 . ~ , ] v # . v ,  + 0 ( ~  ) = ~ , > ~ 0 ,  

where the Kronecker delta 6.~ is defined as follows: 

1 ,  ¢X ----O" 

0 ,  u ~ o  

and the new coefficients are given as 

¢~2  = - -  t P ~ l ,  

Va2 ~ ~ Val ) 

A,2 = - A~l, r/h = t/J2 = - t/~2 = - )/~l, 

, ~  = , ~ ,  - -  - ,~'2 --  - , ~  = 2 n ~ , ,  

^~  1 1 
COl, 11 ~ Oj~ , l i  ^ a  ) , 0,)1,22 - -  0~1, ~ , a} l ,21  ~ ~ fDI ,  12 ) ^ a  ~ a O)1,12 = ~ fD~, 12 ^ a  

^ ,  , ^ ,  1 • 1 • 
~- ~ (D2, 12 ) 0-)2,22 - -  0 ) 2 , 2 2 ,  O)2, II = O-)2, II , O)2,12 0~121 --'-- ~ (D2, 12 ) ^ a  __ 

(D3,11 ~-'~-" (.03,22 ~ ~ O . ) 3 , 1 2  ~ ~ 3,21 ~---O.)3,11 ~ 

A~ 
0)5 ,  I ~ ^ ~  ~ ^~  - -  0.)5, 2 ~ ^ ~  ( 'O5,1)  ~ 5 , 1  ~ ~ O'~6,2 ~ fD6,1 

(D7,21 ~ ~ fDT, 12 O')7,11 ~ (D7 ,11)  0")7,22 ~ O')7,22 ) O")7,12 ~ ~ ~ 7 , 1 2  ) ^m 

(_.O8,11 ~ ^ a  ~ ^ a  a - -  8 ,  12 - -  ( D  8 ,1  i ) ( .D 8, 21 ~ - -  f D  8, 22 ~-" ( O  8, 21 
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and using [A2] it is necessary and sufficient that 

CH - co~,u + 2/z,~6,~ t> 0 

C]: = co~,a + 2/z~26~2 f> 0 

l , 
cinch = (o f , .  + 2~.~6a~)(coI,= + 2#~. , )  >1 ~(C~ + CI~) ~ 

m. ~((,O 1, 12 Jr 2/z,~6,~ + 2/~¢2¢~,1) 2 

[A8] 

for ~ = 1, 2. 
Also for • = 1, 2, 

2 2 
E {2¢P,#6~-2~b~,-°3].~}tr{W'~W#} E D~tr{W, ZW#} >/0, 

~8,¢ffi I p , ¢ l l  
[A9] 

which implies that 

DTI = 2~Pat6,1 - col,  u I> 0 

D]2 = - 2~p~26,1 -- to], !1 /~ 0 

D~ID~2 = (2~P,16al -- OJ~. n)(2¢p~26~2 -- 2¢p~ -- CO3. U) >f ~ (DI2 + D~I) 2 

= [(P~1(6~2 - -  1) + ¢P~26~1 + 0~3.,], 2. 

[A10] 

Before considering the remaining quadratic form in [AI], it is of  some interest to 
examine the quadratic forms in the second law of  thermodynamics for the multiphas¢ 
mixture which arc analogous to the forms [A3], [A5], [A7] and [A9]. Summing up 0c in [A1] 
these forms yield: 

2 

co~,# = 0 ; fl = 1,2 

= (.D a 
l 1,11 

a = l  \ a - I  / J 

B]2 = co ~ o f  a - i  1 ~ 2"22 + ~ + a  # ~ > 0  

2 

2 2 

T. cT, = T. o~.,1 + 2~. I> o 

2 2 

a - - I  ~- - I  

[All] 
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2 2 
E Dil = 2qill ~ O}= - -  3 , 1 1 ) 0  

• = 1  , ~ l  

2 2 

D ~ =  -2 tp ,2-  ~ co],11)0 

• 2 1 2 2 2 2 +od 
When use is made of [4.19] for a highly dispersed mixture, [All]  is reduced to 

2 2 
An +~#11 ) 0, 222 + ~ / z n ) 0  

2 / 
t212 + ~ ~12 + 221 + 

1 
~il ) 0) ~22 ) O, ~11~22 ) ~ (~12 "{- ~/,21) 2 

[A12] 

1 
~11)0) f)l)l')~.0, --~lif i01l)~(fPll--~ll) 2. 

These results are consistent with the theory of mixtures with a negligible interfacial area 
(Bowcn 1973). 

The remaining quadratic form in [A1] can be written as follows: 

VA "V r, [A 13] 

where V is the vector which consists of components (VO, i i, i2, 11, 12, Vt~l, V~2), and A" 
is the symmetric matrix with the components: 

aTl = -~ + COo 

: , _ r , . ,  . , , , . , o , , . >  )o.] 
a~2=a]l = - - a ~ 3 = - - a l l  2LO "~, ~ ~,, -a , ,  + ~.1 

_-_'r~ • ] 
a; ,=  a:l = - a T , =  - , , l ,  2L 8 + ~ , . ,  

1 
a ~  = a~l = ~ w,~,i 

a]2 = --a]3 = - - a ]2=a]3=~ , l  6,1-- +O~tO.ll 
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( .] 
1 

a]6 : a ~  : - -  a~s : - -  a[3 - -  ~ cos, n 

a ] 7  : a ] 2  - -  - -  a]-/--'-- - -  a-~3 : ~ 0)I,2n 

a ~ 4 =  - - a l s  - - a ] 4  a ] s :  " = = 0)12,11 

[A14] 

a ~  : a ~  = - -  a ~  = - -  a [ s  : ~ 0)9, n 

a]~  : a ]4  : - -  a]7 = - -  a]5  : ~ 0)9,2! 

1 
: 0)7,22 : 0 ) ? , . ,  al~ : a~6 ~ 0)7 .n,  a ~  : " 

The necessary and sufficient conditions for the quadratic form [A13] to be positive 
semi-definite are that all principal minors of the matrix A ~ be positive semi-definite, i.e. 

a~ = ~- + 0)0" f> 0 ,  + O'o ,, >t0 

a ~  - " , " -  " > . 0 ,  a %  = 0)~ . >_. O -0)p,n >~0 ass-  0)7,n 

a T , a ~ - a , 2 a , z = ( o  + mo~)[,.l(6,,,--~) + 0),o,n] 

a.a~" ~ - a24a24" " ~ 0 ,  a ~ a k  - -  a ~ a ~  >I O ,  a~san" " - -  a~a~7~ " >i 0 [A15] 

./ ~ - ~  -~:,\ 
det ~-a~s ags a[Q 

\ - a ~  a~, a~n/ 

t>0 

It is sufficient in [A15]m, but not necessary, that 

a~a4~a~7 >t ~ a~(a47a4~ + a.an). 


