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Almract--The paper presents a theory of mixtures with the nonzero interfacial area between the 
constituents of the mixture. The conservation laws are physically motivated by utilizing a volume 
averaging procedure and by the definition of a mapping transformation. It is shown that the theory 
constructed in this manner is consistent with the theory of mixtures with a vanishingly small 
interfacial area and that a second law of thermodynamics can be assigned for each phase of the 
mixture. The conservation laws are examined for invariance properties with the principle of the 
material frame indifference, and a particular constitutive assumption is discussed. Also presented 
in the paper are the conservation laws in the integral form and the jump conditions for the singular 
surfaces in the multiphase mixture. 

1. INTRODUCTION 

A general theory which describes the mixture of materials with finite interracial areas 
between the reacting constituents of the mixture is incomplete at the present time. In 
principle, it is possible to describe such a mixture by the conservation laws for each 
continuum separately and by the jump conditions which serve as boundary conditions at the 
interfaces. In practice, however, this approach is usually prohibitive, and alternate methods 
of analysis are sought. So as to set forth properly the definition of such a mixture, I will from 
now on refer to it as the multiphase mixture. In this definition, the term phase will denote 
a portion of matter with a smoothly varying chemical composition, and phases are dis- 
tinguished from one another by the well-defined boundary surfaces which are mathe- 
matically modeled as the surfaces of discontinuity. 

When the interfacial area becomes negligibly small the multiphase mixture is modeled 
by the theory of mixtures. This theory has achieved maturity principally through the works 
of Truesdell (1969), Eringen & Ingrain (1967), Muller (1968) and Bowen (1976). 

With the final interfacial area a number of models have appeared in the literature which 
claim to give accurate representation of the conservation and balance equations of multi- 
phase mixtures for specific as well as for general situations. Bedford & DrumheUer (1983) 
reviewed recently a great number of works pertaining to immiscible (i.e. multiphase) 
mixtures of both the postulated and averaged variety. In the most physically appealing class 
of theories, the conservation and balance equations of multiphase mixtures are derived or 
motivated by integrating the local macroscopic conservation and balance equations of  each 
phase over the space, time, and probability segments. Drew (1971) carried out time 
averaging ofthe global or integral formulation, while Ishii (1975) performed time averaging 
of the local phasic conservation and balance equations. Delhaye & Achard (1977) derived 
2-phase flow 1-dimensional models by integrating the local phasic field equations over the 
volume, area, and time segment. Time, area, and line segment averagings produce singu- 
larities in some terms in the resulting averaged conservation and balance equations and 
various researchers have found it necessary to carry out double and triple integration 
procedures in order to smooth out these singularities. Trapp (I976) has presented the 
volume- and time-averaged field equations of mass and linear momentum, and discussed 
some constitutive properties of the averaged equations in the equilibrium state. Dobran 
(1981) brought some order to the averaging operators by deriving sufficient conditions for 
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the equivalence of time averaging and ensemble averaging operators in the area-averaged 
form of the conservation and balance equations. Nigmatulin (1979) also used volume 

:averaging to derive two-phase flow equations for bubbly liquids and neglected surface 
tension and surface thermal effects at the interfaces between the phases. He also neglected 
any discussion of the entropy equation for each phase or for the mixture as a whole, and 
performed the decomposition of dependent variables (similarly to Ishii 1975 in his time 
averaging approach) into averaged and fluctuating quantities obtaining thus, in the aver- 
aged equations, the terms proportional to the fluctuating variables. The averaged form of 
continuity, momentum, and energy equations are, therefore, identical (except for the 
interpretation of averaged variables) in the formulations of Ishii and Nigmatulin. Drew's 
(1971) multiple averaging approach (two spatial and two time averagings) was motivated by 
the desire to smooth out any discontinuities in the averaged equations; however, it is not 
clear why indeed it is necessary to utilize so many averagings. His equations are also similar 
to the equations in the time- and space-averaged formulations. 

All averaging approaches yield similar conservation and balance equations of multi- 
phase mixtures; the difference between them is, however, in the interpretation of the 
averaged variables~ When it is proposed that the averaged conservation and balance 
equations contain the dependent variables which are averages (or weighted averages) of the 
dependent variables over a material continuum, then the resulting equations contain various 
velocity, energy and entropy turbulent correlations (Ishii 1975; Nigmatulin 1979), distribu- 
tion coefficients (Banerjee &Chen 1980), or covariance coefficients (Dobran 1981), and it 
is argued that constitutive equations are required for them. Furthermore, if any averaging 
procedure is to form a proper framework for a theory ofmultiphase mixtures then: (!) that 
averaging procedure should not be inconsistent with special physical situations; and (2) the 
averaging procedure should not be inconsistent with the application of the change of frame 
transformation to the field equations to study the invariance properties of these equations. 
The case in point is the time averaging procedure which yields the resulting equations 
singular whenever an interface becomes stationary in the flow field, and the application of 
a change of frame transformation principle to study the invariance properties of the theory 
(such as the principle of the material frame indifference) leads to an inconsistency (because 
this change of frame transformation involves a time-dependent rigid body rotation invari- 
ance). 

The second basic approach used in the formulation of conservation and balance 
equations for multiphase mixtures involves postulating the field equations with a proper 
guidance, of course, from some specific physical situations or from the theory of mixtures 
(i.e. from the theory of single-phase multicomponent mixtures). A theory of this nature 
was proposed by Goodman & Cowin (1972) and subsequently refined leading to the most 
recent version as described by Passman et al. (1983). In this theory, the conservation 
equation of mass and balance equations of linear momentum, angular momentum and 
energy are postulated for each phase, whereas the entropy equation is only postulated for 
the mixture as a whole and not for each phase separately as it appears logically from the 
time- and space-averaged theories described above. Furthermore, the finite interfacial area 
associated with multiphase mixtures is modeled as microstructures and separate balance 
or transport equations for these microstructures (balance of the equilibrated force) are 
assumed. In addition, the postulated energy equation of each phase contains the effect of 
the constituent microstructure. Drumheller & Bedford (1980) derived their immiscible or 
multiphase field equations by utilizing the "Hamilton's extended variational principle." As 
in the postulated theory of multiphase mixtures of Goodman & Cowin and Passman et 
al., the entropy equation for the mixture as a whole is only used. The finite interracial area 
associated with the multiphase mixtures is modeled in the theory of Drumheller & Bedford 
through the virtual mass and expansion-contraction effects (the microstructure of the 
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mixture is modeled by its kinetic energy and generalized forces). The resulting variational 
analysis yields phasic equations of motion and equations which describe the evolution of 
microstructural properties of the mixture (the volumetric fractions, for example). 

A basic difficulty with the postulated continuum theories of multiphase mixtures is that 
they all contain postulates in one form or another. DrumheUer & Bedford's theory described 
above has from the outset a built-in constitutive assumption of the virtual mass and 
expansion-contraction effects, and the theory is constructed on the premise of a variational 
principle whose utility in the context of the complicated interrelation between the field 
equations and constituive equations is altogether not clear. Similarly, the postulated 
balance equations of Goodman & Cowin also discussed above involve a postulatory basis. 
While a postulatory approach should not be refuted on the basis of an inability for a 
a priori justification, it is important, however, to keep a clear perspective of the method at 
all times even if the theory gives results that are consistent with the experiments. As 
discussed above, the balance of entropy equation for the mixture as a whole in the 
postulated theories is in variance with the averaging approaches which require an entropy 
equation for each phase in the multiphase mixture. Even Passman et al. (1983) admit that 
"We find this [the entropy balance equation for the mixture as a whole] to be one of the 
least pleasing results in the continuum theory of mixtures and evidence in itself that more 
research on fundamental questions is needed." It is worth noting that the principle from 
the single-phase multicomponent mixtures (TruesdeU 1969) which states "The motion of 
the mixture is governed by the same equations as in a single body," is also used in the 
postulated multiphase theories. Again, this principle does not appear to valid in any theory 
of multiphase mixtures constructed from an averaging procedure and it also produces 
difficulties in the entropy balance equation for the mixture as a whole unless two different 
temperatures are def ined-one for radiation and the other for conduction. The source 
terms in the field equations for the mixture as a whole can be thought as reflecting its 
structural properties that are different from singie-phase multicomponent mixtures where 
the omission of these terms appears to be justifiable. 

From the above discussion it is evident that there are two fundamental problems which 
need to be solved in order to complete the theory of multiphase mixtures. The first problem 
requires an agreement as to what constitutes a complete set of conservation and balance 
equations, while the second problem requires the descriptions of particular mixtures by 
means of constitutive equations. 

In my view, the multiphase mixture theory should: (1) be consistent with the theory of 
mixtures when the interracial area becomes negligibly small; and (2) be consistent with an 
averaging procedure that does not lead to any difficulties with simple physical situations 
(such as yielding singular field equations when an interface becomes stationary in the flow 
field) or lead to inconsistencies upon the application of the principle of the material frame 
indifference. The second consistency condition above is the existence property, since it 
simply requires that the conservation and balance equations of a multiphase mixture 
theory must yield the field equations identical to those which are obtained by performing 
the space averaging of the local macroscopic field equations of each phase. The simplest 
space averaging procedure which satisfies the requirements above is, clearly, the volume 
averaging. The volume averaging approach has not, however, been fully investigated in 
previous works nor have kinematic concepts, frame invariance or closure of the averaged 
field equations by the constitutive equations been discussed to any significant degree. 

In this paper, the general equation of balance of each phase utilizing the volume 
averaging approach is presented in section 2 which satisfies the two consistency conditions 
discussed above. The conservation and balance equations for the multiphase mixture are 
presented in section 3 where the theory is also given a sufficient mathematical structure. 
It is shown there that a balance of entropy equation for each phase appears naturally in 
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the theory and how the microstructural properties of the mixture associated with the finite 
interfacial area can enter into the formulation. The restrictions imposed on the multiphase 
field equations by the principle of  the material frame indifference are discussed in section 
4, and a general discussion on the closure of the conservation and balance equations by 
the constitutive equations is presented in section 5. Section 6 deals with the integral form 
of the field equations where the jump conditions for the multiphase mixture are presented. 

Notation 

The paper uses a direct notation, and the underlaying space is the 3-dimensional 
Euclidean space E 3 with the Cartesian coordinate system. Vectors and vector fields are 
denoted by the Latin bold-faced miniscules: a, b, x . . . . .  Second order tensors are viewed 
as linear transformations in E 3, and are denoted by Latin bold-faced majuscules: 
A, B, T . . . .  (except X which is a vector of the reference position of the material body 
point). The product of two linear transformations is a linear transformation, All = C, and 
the product of a linear transformation and a vector is a vector, x = Tu. T r is the transpose 
of T, T -1 is the inverse of T, det T is the determinant of T, and the contraction of T is 
its trace tr T. The divergence operator is denoted by V-, Va is the gradient of a, and the 
gradient of a vector field b is the linear transformation Vb. I is the unit linear 
transformation. The tensor product of two vectors a and b is denoted by a ® b, and it is 
identified as a linear transformation. 

The basis in E 3 is denoted by the Cartesian triad of unit vectors (el, e2, e3). The tensorial 
indices are denoted by the italic light-faced miniscules: i, j, . . . .  and the summation 
convention always applies to them. The Greek light-faced symbols • and ]~ always occur 
as subscripts and denote the phases of the multiphase mixture: ~, p = 1 . . . . .  ~. Summation 
over the phases is always denoted explicitly by the summation symbol Y.,. Other symbols 
are defined in the text when they first appear and in the nomenclature. 

2. F O R M U L A T I O N  O F  T H E  T H E O R Y  

The objective of this section of  the paper is to proceed through a series of physical 
arguments which will lead to the differential form of the conservation laws for the 
multiphase mixture. Section 6 of the paper turns this procedure around by postulating the 
integral forms of the conservation laws for each phase and, therefore, allows for the 
inclusion of the discontinuities into the theory of multiphase mixtures. 

As noted in section 1, the volume averaging has clear physical advantages over all other 
averaging procedures. For this purpose, consider the flow field in figure 1 in the Euclidean 
space E03 which consists of the phases • - 1 . . . . .  7, where each phase consists of a single 
chemical component. (It is easy to extend the theory to the ease where each phase consists 
of  a mixture of  different chemical constituents with negligibly small interfacial areas.) 
Embedded in the space E03 is an arbitrary fixed volume ~e" over which it is desirable to carry 
out the volume averaging operation. The volume ~e" consists of  volumes ~ ,  = E6 ~,~ such 
that ~ = ~ ~ .  

For each phase a and volume ~ , , ,  we have the macroscopic conservation laws of the 
continuum physics for the non-polar media (Eringen 1975): 

0 
0~ (p'* ~e)  + v°" (p~'*~v*5) + V °" Je  - p, ,Oe = a e a e  , [2.1l 

where qJ~6, J,a, ¢** and B~ are given in Table 1, and the operator V ° operates in the space 
E03. 

At the interface between the phases ~ and /~ we have the jump conditions (Eringen 
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Figure 1. Representation of  the multiphase mixture in different spaces. 

1975): 

(r~,~'/% + .x~.~) + (m~,~ + .x~. D = zta, [2.2] 

where 

[2.31 

is the interphasc mass transfer rate which arises due to the phase change or chemical 
reactions, S,u is the velocity of the interface, n~ is the unit normal vector which points 
outward from ~ ,  and 3~ is the surface tension term (or possibly some other interracial 
source). ,4~ is defined in Table 1. H, ~ and v in table 1 am the mean curvature of the 
interface, surface gradient vector, and the surface tension coefficient respectively, rh~ is 
defined similarly for the phase/~. Clearly a :/:/~, na5 - - na~, and SA5 -- Set 

In table 1, T~ is the stress tensor, b~ is the external body force per unit mass, v~ is 
the velocity, p~ is the mass density, e~ is the internal energy per unit mass, q~ is the heat 
flux vector, s~ is the entropy per unit mass, tha is the entropy flux vector, 0,a is the absolute 
temperature, r,~ is the heat generation rate per unit volume, and ~ and ,4, are the entropy 
production rates in the continuum and at the interface, respectively. 

Volume averaging of the conservation equation [2.1] is carried out for each constituent 
phase ~ over the portion of the volume "f" which the phase • occupies at time t, i.e. the 
following operation is carried out: 

~f, . [equation (2.1)] d ~  : O. 
a8 

[2.4] 

To interchange the integration and differentiation operators in [2.4], it is necessary to 
define a mapping transformation of the volume "f" in E0 3 into a point P('f ')  of  E ~ as 

Table !. Coefficients of the conservation equations [2.1] and [2.2] 

MASS I 0 0 0 

L , ~  MOt~UM van -Ta~ ba8 o 

AN~LAa MOMENTUM r^v,,a - r  ^Tas r^bas o 

ENER~ %S*~" °.oB-T~Bvos boa'vos roa 

EN'reO~ s~ ~ ~ > o  o~a 

A ~  

O 

(Am)d "  
f2Hyn + ~/:')a8 

r ^ (A . )~  

(At)aS" 

(A,;as;)O 
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illustrated in figure I. In appendix A, this mapping transformation is defined by 
[A.I]-[A.4], and it is discussed there that such a mapping can be made bijective. 

Applying the transformations [A.I ] and [A.2] to [2.4] yields the general equation of 
balance for the phase a. 

-~ ~',(p,~',) + v.~,(oo~'o,o) + v .~ , (s , )  
c~t 

- ~ , (v, ,~, )  - ~ , (p ,a , )  = -E~ fo~, (m=,V'=~ + ,I,~,~) da, [2.5] 

where the volume-averaged quantities are defined as follows: 

(F,) = 7 ,  " F~d~'. [2.6] 

Since [2.5] is the outcome of mapping of each "//'= in E~, = = 1 . . . . .  Y, into a point of 
E ~, and each volume ~ is also mapped into the same point, it is evident that at each place 
x of E 3 there exist 7 phases. There is nothing strange about this construction and of course 
it forms the basis for the theory of mixtures and for the Maxwell's kinetic theory of gases. 
My purpose for constructing the form of [2.5] was to provide the consistency of the theory of 
multiphase mixtures with the theory of mixtures with a vanishingly small interracial area. 

To motivate the meaning of the "phase velocity" in E 3, and as well as the meaning 
of other independent variables, it is instructive to specialize [2.5] for the conservation of 
mass in Table 1. In such a case this equation is reduced to 

~,,(p~) + V.C',,(p,,v,,)=-~Io rh,~,da. 
A6 

[2.7] 

Equation [2.7] suggests that we define the (partial) density of phase = by the equation 

.,5, - - ~ -  (p=), [2.8] 

and the velocity of phase = by 

-~(o,v,) 
[2.9] 

Summing up = in [2.7] we also have that 

o-~ E'r,<p,> + v.E'r,<p,,,> = - E  m,,,da. [210J 
= A/I 

Using [2.2] the right side of [2.10] is equal to zero, and using [2.8] and [2.9] we can define 
in [2.10] the mixture density p and the center of mass or mixture velocity v as follows: 

d¢ 

o¢ 

[2.11] 
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The definitions [2.8], [2.9] and [2.11] are fully consistent with the theory of mixtures 
(Truesdell 1969, Bowen 1976). 

Equation [2.5] suggests the definition of two types of averaged quantities. The 
density-weighted average of a physical property F, will be denoted by P,, whereas the 
partial quantity of a physical variable G~ will be denoted by G~. The velocity of phase a 
is also defined as a density-weighted average since this is quantity directly measurable by 
a finite size instrument. Thus, 

(p,F,) 

[2.12] 

3. C O N S E R V A T I O N  A N D  B A L A N C E  E Q U A T I O N S  F O R  M U L T I P H A S E  M I X T U R E S  

In the previous section, I have given a physical motivation for the derivation of the 
general equation of balance for phase • [2.5]. In this section, I will present the conservation 
and balance equations for the multiphase mixtures and assign sufficient mathematical 
structure to the theory. The latter is indispensible for the study of constitutive equations. 

3.1 Kinematics 
As in the theory of mixtures (Bowen 1976), the multiphase mixture can be thought to 

consist of y diffusing bodies (phases) ~, ,  0t = 1 . . . . .  y, and each ~ ,  to belong to a 

differentiable manifold which is isomorphic to the 3-dimensional Eucledean space E 3. 
Each body ~8~ consists of body points (particles) Xo, and the configuration ~ of ~ is a 
homeomorphism of ~Sa into E 3. Corresponding to the body points X~ and the time t a motion 
is assigned to ~8~, and the position x in E 3 of the body points Xo at time t is represented by 

x - xa(Xa,  t ) .  [3.]1 

To each ~ ,  is assigned a reference configuration x~ at time to > t, and the place of the 
particle X, in x~ is given as follows: 

x ,  = ~,(x,, to) .  [3.21 

Combining [3.1] and [3.2] we have 

x z z , ( K ; ' ( x ~ ,  to), t)  - z . . ( x , ,  t ) ,  [3.3] 

where Z~, is the deformation function of ~,.  
The expression [3.3] is assumed invertible, Xa - X2, I (x, t), for each ot at each time t, and 

/.~ and ZT, I are differentiable as many times as necessary. The spatial coordinates are 
expressed by the lower case italic indices, x =  x~,, and the material coordinates are 
expressed by the upper case italic indices, X~ = X~eh where e~.e, = 6~ and el'ex = ~fK are 
the Kxonecker deltas. 

The velocity and the acceleration of the body point X, at time t and place x are 
respectively: 
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O/~(X~, t) .. 02Z~,(X,, t) 
¢" = Ot v~ ----- OI 2 [3.4] 

The backward primes affixed to the subscripted symbols with cc always indicate the material 
derivative "following" the ccth phase. 

The deformation gradient of phase ce is a linear transformation defined by 

OXk 
F, = GRAD Z~,(X,, t), F~,j = 

OX~: 

F~ -I Vz~i(x ,  t), F -~ OX~j [3.5] 
.~ .  a j k  ~ { ~ X k  ' 

and the velocity gradient of phase c~ is given by the expression: 

It then follows that 

L~ = W,(x,  t), L~j = axj" [3.6] 

L~ = l~,Ff~. [3.7] 

The mixture density and mixture velocity are defined respectively as 

p = E : ,  [3.s] 
G[ 

pv = ~ ,  [3.9] 
a 

and the diffusion velocity is defined as the difference between the phase velocity and the 
mixture velocity, i.e. 

u~ -= ¢, - v .  [3.10] 

As pointed out by Bowen (1976), there are two mathematical identities which are useful 
for discussing the conservation laws (Truesdell & Toupin 1960, section 158). If F is a 
differentiable function of x and t, then the time derivative "following" the ath phase and 
the time derivative "following" the mixture are respectively 

OF OF 
: = ~ + (vr)~,,  r = ~7  + (vr )v ,  [3.11] 

and thus 

/~ --/~ = (VF)u~. [3.12] 

If pF -- Y., ~,/w, then it fol lows that 

[3.13] 
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3.2 Conservation of  mass 
Substituting the coefficients for the conservation of mass in table 1 into the general 

balance equation [2.5], and using the definitions [2.8], [2.9] and the identity [3.11] m, we 
have an equation for the conservation of  mass of  phase a: 

+ = [3.14] 

where 

~P,--- - ~  th~da [3.15] 
A6 

is the mass supply of phase a and arises due to the phase change or chemical reactions. 
Summing up all phases o~ in [3.14] and utlizing the definitions [3.8], [3.9], [3.1 I], and 

[2.2] with A~5 - 0 in table 1, we have an equation for the conservation of  mass for the 
mixture 

+ pV'v = 0,  [3.16] 

and the compatibility condition on the mass supplies 

~,---0. [3.17] 
Ol 

Equations [3.14] and [3.16] reduce the identity [3.13] to the following: 

p? - E - v. :: uo + ej'.l [3.181 
a 

3.3 Balance of the linear momentum 
The linear momentum equation for the phase ~ is obtained by substituting the coefficients 

for the balance of linear momentum from table 1 into [2.5] and using the definitions 
[2.12], 

[3.191 

where the linear momentum supply or source is defined by 

[J, - -c ,v ,  - ~ ~ f ,  (rhavo~ - T,~n,~) da - V'CL, . [3.20] 

Cm, is the velocity covariance coefficient (a linear transformation) and is defined in 
appendix B. 

The linear momentum supply or source ~, in multiphase mixtures arises due to the three 
effects: (1) from the action of the surface traction force Tan~ which is imposed by other 
phases upon the phase a; (2) from the phase change or chemical reactions; and (3) from 
the divergence of the covariance C~ which arises due to the finite interracial area between 
the phases. These effects can be considered as giving rise to the microstructural character- 
istics of the mixture and must be modeled by the constitutive equations. One such 
constitutive decomposition which is popular in two-phase flow modeling is presented in 
Appendix C, since in the past the modeling of ~, has been of considerable controversy. 

The linear momentum equation for the mixture is obtained by summing up ~ in [3.19] 
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and using [3.18] with f .  = ~.. The result is: 

p~ = V . T  + pb  + Pro. [3.21] 

In the above equation, the stress tensor for the mixture T, the mixture body force b, and 
the mixture momentum supply ~,, are defined respectively by the expressions: 

[3.22] 

The surface tension term (A~)~ in [3.22]3 is defined in table 1. 
Combining [3.20] and [3.22]3 we have the compatibility condition for the momentum 

supply for the mixture, i.e. 

~, = ~ (~,~ + ~,) = ~ (~u~ + ~ ) .  [3.23] 

Notice that in [3.22], the stress tensor for the mixture is symmetric if and only if Z~ T~ is 
symmetric since u, ® u, is always symmetric. Thus, it is possible that T is synmietric even 
if T, are not symmetric individually. 

Whereas in the theory of single-phase multicomponent mixtures the momentum supply 
for the mixture as a whole is assumed to be equal to zero, this does not appear to be true 
in the theory of multiphase mixtures for two reasons: (1) the surface tension effect can be 
important; and (2) the divergence of the velocity covariance C~, is likely to be of 
importance whenever the interfacial area is finite. The mixture supply vector ~,, renders 
[3.21] different from the momentum equation for a single body. Since it is common in the 
theory of mixtures (Truesdell 1969) to accept the principle: "The motion of the mixture 
is governed by the same equations as is a single body," the acceptance of this principle 
in the theory of the multiphase mixtures does not appear to be justifiable. Passman et al. 
(1983) also adopted the above principle in their theory of immiscible or multiphase 
mixtures and noted that it does lead to difficulties in the interpretation of the entropy 
balance eqution for the mixture as a whole. To bypass this difficulty and still retain the 
principle, the above authors found it necessary to define two different temperatures--one 
for conduction and the other for radiation. 

3.4 Balance of  the angular momentum 
From table 1 and [2.5], the angular momentum equation for the phase o~ becomes 

[3.241 

where the angular momentum supply or source is defined by the expression: 

'f. ,h~-  - x  A (~  + ~ v , ) - ~  ~ r A (th~v,z - T~n~) da 
A8 

--/~,(r --  x) A v, - ~,(r -- x) A v, + V" (r - x) A T,  
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+ ~el(r - x) A g, - V. ~,(r A V~v. - f~). [3.25] 

Expanding [3.24] and using the linear momentum equation [3.19] for the phase 0c we have 

Ih~ + e,~;jk i"~,j - 0, [3.26] 

where ¢#t is the alternating symbol. Denoting by 1~I~ the skew-symmetric linear trans- 
formation (Bowen 1976), [3.26] is written as follows: 

1£,1, = T, - 'I'I, [3.27] 

where the components of 1~ are: 

K ,  = = = o 

114~, = - M,l 3 - -  r f i ~  

#irell2 = - M . , I  = ~ .  

i.e. 
The angular momentum equation for the mixture is obtained by summing up ~, in [3.24] 

p x A v--V' (x  A T ) + x  A p b + i = + x  A Pro, [3.28] 

and 

is the angular momentum supply for the mixture. Expanding [3.28], and using the linear 
momentum equation for the mixture [3.21] and the definition [3.27], it follows that 

sit,, + ego~T ~ ffi 0 

el 

[3.29] 

The angular momentum supply vector for the mixture is also obtained by summing up 
in [3.25], and using [3.23] and [3.22]. 

' i  ~ ,  -- - ~  ~ (r - x) A (A,)~ + x A V . ~  CI, 
A 8  

- ~ , ( r - x )  A vel- E~el(r-- x ) A vel 
cl el  

+ V ' E  (r - x) A T, + ~. ~el(r - x) A~'~'~ 
el el  

- v-Y. ~el(i A vJ(v. - ~ J .  
g 

[3.30] 
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In the theory of mixtures without body couples and couple stresses ffa,, = 0. From [3.30], 
however, this does not appear to be true necessarily in the theory of multiphase mixtures 
even in the absence of body couples and couple stresses because of the presence of 
interfacial forces and nonlocal effects (the covariance effect). From [3.29] and [3.30] we can 
see that the vanishing of the interfacial forces and nonlocal effects is "only sufficient 
condition for &m = 0 or for the mixture stress tensor to be symmetric. However, the 
vanishing of the angular momentum supply for the mixture is both sufficient and necessary 
for the stress tensor of the mixture to be symmetric. These observations are consistent with 
a physical observation that it is possible to have a situation with 'r= = 1 ' r  and (A,,)=6 # 0. 

3.5 Balance of  energy 
The energy equation for phase ~ is obtained from [2.5] by utilizing the coefficients from 

table 1, and [3.14] and [3.19], 

~)~ = tr ( t r v ~ . )  - V .  q. + ,~.,~., + ~, [3.31] 

where the energy supply or source is defined by 

\ / 6 daa~ 

Ta~ v~) .n,~] da + c~ + V'(c~, - c~.) + ( q e _  r [3.32] 

+ T(v=.V,-  v=.v,) + ~-(~; ~, - ~ = ) ,  

and where the covariance coefficients c4,,, c3, and c2~ are defined in appendix B. The 
covariance coefficients represent the effect of  the finite interfaeial area and do not appear 
in the theory of single-phase multi component mixtures. 

Equations [3.25] and [3.32] hint that momentum and energy supplies are complex 
functions of multiphase variables and that their constitutive form should include the 
nonloeal effects. The region of nonlocality is clearly equal to the size of the averaging 
volume $" and this volume should be incorporated into the constitutive assumption. It is 
through such an description that the averaging volume ~ can reenter into the framework 
of the present theory and the resulting multiphase field equations become then the 
integro-differential equations. By the principle of equipresence, the nonlocal effects must 
enter into the entire set of constitutive variables. The surface tension and nonlocal effects 
associated with the mixture can be thought of as describing its microstructural character- 
istics and as such they are not easy to model in full generality. 

The energy equation for the mixture can take two convenient forms. An equation in 
terms of the mixture kinetic energy follows most simply from [2.5] when = is summed up. 
The result is: 

p(~ + ~ v • v) = V • (try - q) + pr + pv. b + f?.,, [3.33] 

where the mixture properties are defined by the following relations: 

.or _= ~ [p~, + ~L • u=] 
i l l  
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[3.34] 

~,-~ c~ + V.(e3~- c,,) + ~- 

(d,),~ in [3.34 h is the rate of work by the surface tension forces and it is given in table 1. 
The kinetic energy of the mixture can be eliminated from [3.33] using the linear 

momentum equation for the mixture [3.21], i.e. 

p~ - tr (TrVv) - V.q + pr + (~m - v. Ore). [3.35] 

Combining [3.23], [3.32] and [3.34]4 results in the compatibility condition for the energy 
supply for the mixture. 

)] U~ . [3.36] 

In the theory of mixtures the energy supply for the mixture as a whole is assumed to 
be equal to zero. For multiphase mixtures, this does not appear to be justifiable unless the 
interracial sources and nonlocal effects are absent. In most practical applications, however, 
the work of the interracial forces will not be significant when compared to other work 
terms in [3.33] and [3.35]. 

3.6 The second law of  thermodynamics 
For the single phase material continuum, it is a common practice to assume that the 

entropy flux h is equal to the heating flux q since the kinetic theory of gases confirms 
approximately this assumption. In his theory of mixtures, Muller (1968) has proposed for 
each constituent that h :~ q and considered constitutive equations for them. If it is assumed 
that for the single-phase material h = q then within the scope of the present theory, it should 
be justifiable to set h, - qo and I will do so here. In section 6 of the paper, the proposed 
integral relations do not invoke this conjecture. 

The second law of  thermodynamics for the phase ~ is obtained from [2.5] by utilizing 
the coefficients for entropy in table 1, i.e. 

p-A+v. - [3.3"/] 

The entropy supply or source for phase 0c is defined by 

1 [m,~ + ~ . ~  ~ ,  ~'-~ v'(c~ +e~-  c" + ~  L 0~ ] [3.38] 

and it is not necessarily positive, c~, c~ and c~, are the covariance coefficients which 
represent the effect of the finite interracial area and are defined in appendix B. The 
definition of the absolute temperature ~'~ in [3.37] differs from the definition by Drew 
(1971). According to this author the average temperature for phase ~ should be 0"~, i.e. the 
density-weighted average. To me this definition is not physical. A different temperature 
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for each phase is necessary in the theory to allow for the thermal nonequilibrium between 
the phases. 

The second law of thermodynamics for the mixture is obtained by summing up ~t in [3.38] 
and using the identity [3.18] with/~, = .~,. The result is 

+ [3.39] 

where the mixture entropy, the mixture entropy production rate, and the mixture entropy 
supply are defined respectively as follows: 

pC -= 0 

-= T., = I v .  + - c , j  + , 

[3.4o] 

(A,)e is the entropy production rate at the interface and it is positive semidefinite (see table 
1). 

In the theory of the single-phase multicomponent mixtures the entropy supply for the 
mixture as a whole is assumed to be equal to zero, whereas in the theory of multiphase 
mixtures it is not reasonable to hypothesize that either ~, or ~, are equal to zero. 
Comparing [3.39] with a similar equation in the theory of mixtu.res (Bowen 1976, [1.6.11]) 
it is seen that both equations are very similar although the variables have different 
interpretations in the two theories. 

There is another important difference between the theory of mixtures and theory of 
multiphase mixtures and this is in the interpretation of the axiom of dissipation (Truesdell 
1969). In the mixture theories of Truesdell & Bowen, the axiom of dissipation refers to the 
statement that the mixture entropy production is positive semidefinite, whereas Eringen 
& Ingram (1967) postulate that the axiom of dissipation should also hold for each 
constituent of the mixture. Truesdelrs argument in favor for the axiom is provided by the 
Maxwelrs kinetic theory of gases in which there is no basis whatever for an entropy 
inequality for each constituent. Eringen and Ingram do not offer an explanation for 
postulating their local axiom of dissipation. It should be noted that in the theory of 
mixtures there is a disagreement whether only the global or the local axioms of dissipation 
should be utilized to study the constitutive equations. Indeed, Green & Naghdi (1971), and 
Bedford & Ingrain (1971) have considered an entropy inequafity for each constituent of 
the mixture. The serious drawback of the entropy inequality for each constituent of the 
single-phase mixture is that it yields the equilibrium chemical potential which depends only 
on the properties of that constituent. Except for the ideal mixtures, this result is in variance 
with the single-phase equilibrium thermodynamics. When an entropy inequality for the 
mixture is only used, this inconsistency does not arise (Bowen 1976). 

The theory of multiphase mixtures appears to yield naturally the axiom of dissipation 
for each phase as is illustrated by the development which gives [3.37]. As long as the 
interfacial area remains finite, it is not inconsistent with the equilibrium thermodynamics 
to have a second law of thermodynamics for each phase. This deduction follows from the 
study of constitutive equations for the multiphase mixtures that is presented by Dobran 
(1984). 

The multiphase mixture theory presented above agrees with the theory of Drumheller 
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& Bedford (1980) when in their momentum and energy equations the source terms, the 
virtual mass effect, and the expansion-contraction effect are identified with the source terms 
in this paper. In this respect, the conservation laws presented in this paper are more 
fundamental since they are not constructed from any a pr ior i  constitutive assumption. The 
conservation laws of Drew (1971) for multiphase mixtures have also a built-in constitutive 
assumption of "suitable" length and time scales. In addition, I do not agree in this 
formulation with the definition of the average phase temperature and the study of 
constitutive equations becomes less direct utilizing these conservation laws since the time 
averaging also affects the principle of the material frame indifference. The time-averaged 
2-phase conservation laws of Ishii (1975) are similar to the conservation laws based on the 
volume averaging approach except that Ishii's equations contain turbulent fluxes instead 
of the covariance coefficients. His theory assumes that the stress tensor for each phase is 
symmetric and that the entropy inequality exists for each phase. The drawbacks of the 
time-averaged model are, however, that its conservation laws are singular whenever an 
interface becomes stationary and the study of constitutive equations becomes less direct 
for the reason indicated above. Nigmatulin's (1979) volume averaging theory is incomplete 
as already discussed in section 1. It does not contain the interracial source terms, arbitrary 
number of phases, the entropy balance equation, and the theory is not given a rigorous 
mathematical structure such as kinematics. It should be stressed (see also a discussion by 
Dobran 1983a) that the purpose of utilizing an averaging procedure in the "derivation" 
of multiphase field equations is to give the theory an existence property and that this 
together with a rigorous definition of kinematic concepts can form a framework for the 
construction of constitutive equations for special mixtures. 

The postulated multiphase mixture theories of Goodman & Cowin, Passman et al., and 
Drumheller & Bedford discussed in section I have mixture source terms absent in the linear 
momentum, angular momentum and entropy balance equations. As already noted in a 
number of occassions, the mixture source terms in the presented theory of multiphase 
mixtures do not appear to vanish unless the mixture is endowed with the absence of 
interfacial sources and nonlocal effects. In this respect the axiom from the single-phase 
multicomponent mixture theory that the motion of the mixture is governed by the same 
equations as is a single body does not appear to be justifiable for multiphase mixtures. This 
is to say that an argument can be raised that some source terms for the mixture can indeed 
be incorporated into the field properties whose constitutive equations could then account 
for this inclusion. An example is the momentum supply Pm which could be incorporated 
into the stress tensor term in [3.2211, but in general for other source terms this does not 
appear to be possible without invoking postulates of the form of the final field equations. 

Furthermore, upon reflecting a moment on the supply terms for the mixture or for each 
phase (~, ~ ,  k ,  l~ ,  1~1,, ~, ~., 8,, ~.) it can be seen that these terms contain the 
microstructural characteristics of the mixture. As such they are more general than the 
terms proposed by Drumheller & Bedford (1980) and Passman et  al. (1983), among others. 
This being the case, then, it is clear that care must be exercized in assuming the form of 
microstructural characteristics in the multiphase field equations. 

4. R E S T R I C T I O N S  I M P O S E D  ON T H E  C O N S E R V A T I O N  LAWS BY THE P R I N C I P L E  OF 
THE M A T E R I A L  F R A M E  I N D I F F E R E N C E  

In classical physics, it is only required that the conservation laws remain the same in 
all frames moving with the constant velocities. This change of frame from § to ~* is 
represented by the Galilei group of transformations, i.e. 

x* = Q(t)x + e(t), [4.1] 
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where d Q / d / =  0 and e = wt. Q represents an orthogonal linear transformation (a fixed 
rotation of  the frame ~* with respect to the frame ~), and w is the fixed velocity of the 
frame ~* with respect to the frame ~. 

For the phase ~, the principle of the material frame indifference is stated as follows: 
Given a deformation function Z~, the change of  frame § from E ~ to E 3 induces also a 
change in the motion of  the body point X~, namely: 

X~,(X~, t) = e(t) + Q(t)z~(X~, t) , t  [4.2] 

where e(t) is an arbitrary time-dependent translation vector, and Q(t) is a time-dependent 
orthogonal linear transformation which represents a rigid body rotation, i.e. 

Q(t)Q(t)r = I 
[4.3] 

detQ- +1, QQT _(QQr)r. 

Under the change of frame [4.2], the defining properties of objective scalars, vectors and 
second order tensors are as follows: 

f*(x*,  t) = f ( x ,  t) 

y*(x*, t) -- Q(t)y(x, t) [4.4] 

M*(x*, t) = Q(t)M(x, t)Q(t) r. 

The change of frame [4.2] requires that ~* = ~a, ~* = ~ ,  V* • 7" = V • ~ ,  and from the 
conservation of  mass equation [3.14], the mass supply must transform according to 

2" = ~,. [4.5] 

The forces are primitive entities in mechanics, and, as such, they are required to 
transform as vectors according to [4.4]. In the linear momentum equation [3.19], therefore, 
V*. i"* - V. t , ,  b* - Qb~, and 

~* = Q(t)b, • [4.6] 

From [4.2] the velocity and acceleration transform as 

~* -- Q(t)x  + Q( t )~  + ~(t) 
[4.7] 

~* -- 0 ( t ) x  + Q( t )~  + 2Q( t )~  + ~:(t), 

and are, clearly, not frame indifferent. 
From the mixture linear momentum equation [3.21] or from [3.23] we must also have 

that 

~* = Q(t)~m. [4.8] 

tThe origin of time in the two frames is here taken to be the same without the loss of generality. 
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Since 1'* = QT~Q r, the angular momentum skew-symmetric linear transformation [3.27] 
and [3.29] are required to transform according to the following rules: 

1(4" = Qlf, I~Q r [4.9] 

If, l* = Qlf, IQ r . 

In the energy equation [3.31] for phase r, we have ~* = ~ ,  ~* = ~ ,  ~* = F~, and 
V* . ~  = V "th. The velocity gradient L~ can be decomposed into a symmetric part D~ and 
into a skew-symmetric part W~, i.e. 

1 1 
L~ = V~ = ~ 0L~ + L r) + ~ (L~ - L~ r) = D~ + W~, [4.10] 

and thus 

Since 

and 

then 

and [3.31] requires that 

1 tr (lf'LW,) tr (i"TVva) = tr (i"rD.) - ~ 

tr (i"r*D~ *) = tr (t~D~) 

tr (1VI*W*) = tr (lf,1,W~) + tr (l~laQr()), 

1 tr (T~V*~*) = tr (T~rV~) - ~ tr (I~LQ rQ), 

, 1 * T "  t ,  =¢~+~t r (M~Q Q). 

[4.11] 

The energy supply ~ is, therefore, not frame indifferent unless the angular momentum 
supply IVIa is equal to zero. Note, however, that in the Galilei frame of reference 0 - 0 
and ~ is frame indifferent. 

From the mixture energy equation [3.35] or from the compatibility condition [3.36] and 
from [3.29] it follows that the mixture energy supply for the multiphase mixture 

~* - v*-~*  = ~ .  - v . ~ .  + 1 tr (1VIQr{)) [4.13] 

is not frame indifferent unless l~l = O. 
Under the change of frame [4.2], the entropy supply in [3.37] must remain frame 

indifferent 

~* = ~ ,  [4.14] 

[4.12l 
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since .~* = .~, .~* = .~., ~7" • (~i*~lg*) = ~7 • (~!~/0~), ~:* = Z'~, g* = ~=, ~* = ?~ and ~* = ~.. 
Using [4.14] in [3.40] implies that 

.~* = g, ,  [4.15] 

and is also demanded by the mixture entropy equation [3.39]. 
The energy supply can be made frame indifferent by including into the energy equation 

[3.31] the rate of work due to the couple lf, l~. The form of this work term will arise naturally 
when we examine a particular constitutive assumption in the next section. 

5. G E N E R A L  DISCUSSION ON THE C L O S U R E  OF THE C O N S E R V A T I O N  AND 
BALANCE E Q U A T I O N S  BY THE C O N S T I T U T I V E  E Q U A T I O N S  

The conservation laws for the phase a are expressed by [3.14], [3.19], [3.27] and [3.31], 
and the compatibility conditions between the phasic and mixture conservation laws are 
expressed by [3.17], [3.23], [3.29] and [3.36]. The second law of thermodynamics [3.37] only 
requires that the assumed material response or the constitutive assumption is consistent with 

it. 
According to Coleman & Noll (1963), the thermodynamic process is defined by 

x = Z~,(X,, t) and by the following fields which depend on x and t: 

~ ,  ?~, t , ,  6~, ~ ,  If, l~(or'i'r),g~, cl~, [5.1] 

?., ~°, .~., ~. and ~. for a = 1 , . . . , 7 .  

Furthermore, to define the thermodynamic process [5.1] it is sufficient to assign the 
constitutive equations for ~'~, T~, ~,  Iris, ~, ~ ,  ~, ~. and ~ at X. by the history of the fields 
x = X~.(X~, t) and ~(x, t). The remaining fields ~ ,  b~ and ~ in the list [5.1] are determined 
from the conservation laws, and local, nonlocal, and memory effects of the material 
response are included in the history. 

A fairly general constitutive assumption is the following: 

=f(~,  ~ ,  ~7U~, F~, F'~, GRAD F~, ~, ~), 
[5.2] 

and no confusion should arise in the notation where each constitutive variable of the phase 
a(a  = 1 . . . . .  7) depends on all other variables in the functional expression f,  and ~'~ . . . . .  ~'t) 
is interpreted to mean ~'D, • • . ,  ~'~, . . . .  ~ . . . . .  },. 

The above constitutive assumption allows for the propagation of thermal waves, ~s (this, 
of course, does not imply that by including ~'~ an independent constitutive variable proves the 
existence of such waves); for heat conduction, V~'~; for viscous effects, F#; for density 
gradients, GRAD FB; for viscous drag, ~#; and for the virtual mass effects, }B. It does not 
include the nonlocal effects discussed in section 3.6 and, therefore, its applicability is limited 
to mixtures with sufficiently small interfacial areas. By including into the theory the above 
independent variables it is assumed that the resulting theory would be able to predict at least 
some simple physical phenomena for both fluid and solid mixtures. For a fluid, for example, 
GRAD F B would be replaced by V~ B, whereas for isotropic solids by the gradient of left 
Cauchy-Green tensor (see, e.g. Bowen 1976). The virtual mass effect is assumed to account 
for the acceleration of the continuous phase when the dispersed phase is moving relative to 
it. 
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Equation [5.2] satisfies a number of principles of the constitutive equations. These are 
causality, determinism, equipresence, homogeneous material invariance and local action. 
A constitutive equation will be also required to satisfy the principle of the material frame 
indifference, and by a simple inspection, [5.2] does not satisfy this principle. 

In the frame f *  we can write [5.2] as follows: 

A . ,  , (c., T,, M/, i : ,  3:) 

= f(~'~, ~ ,  V*~'~, r ] ,  ~'~, GRAD r~, ~;, ~ ) ,  [5.3] 

Using now the results of section 4 for the transformation of scalar, vector and second order 
tensor fields from the frame ~ to the frame ~*, [5.3] becomes: 

1 (~, QT.Q r, Q~., Qlf, I.Q z, ~., Q~,  ~. + ~ tr (I~LQT(~), ~,  .~) 

-f(ffa, ~'B, Vffa, QFB, QFB + QFa, GRAD Qra, 

Ox + Q~a + e, Qx + 2Q~a + Qt + i0. [ 5 . 4 ]  

Two sets of necessary conditions are next considered. Select first Q - I, Q - o, e - - ~ ,  
(~ - o, t~ - -~v and substitute into [5.4]. The equation which results is next required to hold 
in the frame ~* in a similar manner as [5.3]. Using the transformation properties for the 
tensor fields from section 4 again, the resulting equation is reduced to the form which is 
similar to [5.4]. The second set of necessary conditions are now selected as Q = I and 
Q - - W  v, and the result is reduced to the frame indifferent form 

(~, "i'~, [~, l~l~, L, q~, ~ - l t r  (1VIEW.), ~., ~)  

-f(~a,#a,F,, V~'#, D,, W, - W ,  GRAD F,, 

v# - v~, ~# - ~v - 2 W v ( ~ a  - *v) ) .  [5 .5]  

The two sets of necessary conditions considered above are also sufficient for [5.5] to hold 
true for all Q Q r .  I'and (~QT - _ (~)Qr)r. 

It is noted from [5.5] that 

A 
- ] tr tM,W,) 

is frame indifferent although 71 is not (Cit. [4.12]). This being the case, we can redefine the 
energy supply in [3.32] as follows: 

I t 0C w,), [5 .61  

where the last term in the equation represents the rate of work due to the couple 1~. The 
redefined energy supply ~,a is now frame indifferent as it is easy to show. 
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Equation [5.5] also shows that the constitutive variables can depend on the difference 
of accelerations, Ca- ¢~, only in the linear approximation, and that for the single phase 
continuum there is no dependence on the spin rate W. This last conclusion is well-known. 
A simpler version of [5.5] was also obtained by Bowen (1976). 

The constitutive assumption [5.2] assumes that no volumetric fractions enter as 
independent variables, since the conservation and balance equations for a multiphase 
mixture presented in section 3 do not explicitly contain these variables. This is in contrast 
to the formulations of Drumheller & Bedford (1980) and Passman et al. (1983) who 
include such fractions for modeling the microstructural characteristics of the mixture and, 
consequently, require additional balance equations to close the governing field equations. 
Equation [5.2] was also required to satisfy the principle of equipresence by which there 
should be non a priori reason for discriminating any kinematical variable which enters in 
the different response functionals f in [5.2]. While in the theory of single-phase multi- 
component mixtures this is generally an established procedure, in the theories of 
multiphase mixtures this is certainly not the case due to an argument that the phases are 
physically separated and should, therefore, obey different rules. Drew (1976) and as well 
as most recently Passman et al. (1983) advocate the principle of phase separation whereby 
the material-specific dependent variables of the ~ th phase only depend on the independent 
variables of this phase, whereas the supply or source variables depend on all of the 
independent variables. By not advocating the principle of phase separation, Dobran (1984) 
showed that it is possible theoretically for the stress tensor of phase u to be affected by 
other phases and by their rotational motion. This result appears reasonable in view of a 
similar result in the theory of sin#e-phase multicomponent mixtures (Bowen 1976) and 
it thus provides a further consistency between the two theories. 

6. INTEGRAL FORM OF THE CONSERVATION LAWS AND JUMP CONDITIONS FOR 
THE MULTIPHASE MIXTURE 

The conservation and balance equations for a multiphase mixture were derived in 
section 3 through physical as well as through the metaphysical arguments. The entire 
metaphysics, however, rests in the definition of the mapping transformations in Appendix 
A. These mapping transformations have allowed us to place into one-to-one correspon- 
dence the theory of multiphase mixtures and the theory of mixtures. In fact, the presented 
"derivation" of the theory of muitiphase mixtures provides a very good motivation for the 
"derivation" of the theory of mixtures. 

The theory of multiphase mixtures is more complex than the theory of single-phase 
multicomponent mixtures for two reasons. First, this complexity is reflected in the apparent 
nonvanishing of the linear momentum, angular momentum, energy and entropy source terms 
for the mixture, and second, the constitutive equations of greater complexity should be 
constructed in order to account for the nonlocal effects. 

In previous sections, it was assumed that in the space E 3 all the fields of the 
conservation laws possess sufficient smoothness. Then, what about the possibility of 
relaxing this smoothness assumption of the fields in order to account for the discontinuities 
in the multiphase mixtures? It is apparent that to study such entities, we need the integral 
form of the field equations for each phase ,t, and to construct such forms, it is necessary 
to demand that, in the regions of E 3 with sufficient smoothness, the integral form of the 
conservation and balance equations must reduce to the differential form of section 3. 

With the above as a guide, let Y" be a volume region in E 3 which contains the phases 
of the multiphase mixture, and let S denote the integration over the volume Y'. The 
boundary of Y" is c~Y" and the integration over the boundary will be denoted by ~. The 
backward prime, as before, denotes the time derivative "following" the phase u, and the 
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dot (.) denotes the time derivative "following" the mixture~ The conservation laws in the 
integral form for the phase • and for the multiphase mixture are the postulates: 

6.1 Conservation of mass 

[6.11 

r o d ~ = 0 .  

6.2 Balance of the linear momentum 

[6.21 

frpvd~--~a, Tnda + f,.pbd'C" + f~ P.d'¢" 

6.3 Balance of the angular momentum 

f r  x A P,',dY" -- ~a,. x A 'l',n da + I,. x A (fi,~, + ' ,  + ~,',) d ~  + f r  tfi, d ~  

~ x A p v d ~ = ~ o r x A T n d a + I r - x A ' ° b d ~ + f , - x A ' m d ~  [6.3] 

+ f, @.d,'. 

6.4 Balance of energy 

f,.~.(e,+½V,",)d*'=~,.~',"t,nda-~o,.~'*da+f,~,e,d*" 

[6.41 

f,.P(' + 2 v'v)d~ = ~a,.v'Tnda-~a, q'nda + f,.pr d*" 

+ f pv.u d~ +/~ (~.+ v.~.)d,'. 
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6.5 The second law of thermodynamics 

d a -  + 
0,, 

[6.s] 

+ f ~md~= f p~ d~>>.O. 

The mixture properties p, v, T, b, 0,,, nhm, c, r ,  q, bin, s, 6 and ~,, in the above equations 
are expressed by [3.8], [3.9], [3.22], [3.30], [3.34] and [3.40] respectively. In the balance of 
the angular momentum equation [6.3] the external couples and couple stresses have been 
excluded, and [6.5] do not assume that the entropy flux vector ~ is equal to the heat flux 
vector q,. Equations [6.1 ]-[6.5] are also identical to the equations in the theory of mixtures 
(Bowen 1976) when it is assumed that 0m -- 0, nhr~ = 0, b,, = 0 and .~,, - 0. 

To derive the jump conditions for multiphase mixtures, let ~ be a volume region which 
contains a fixed amount of matter of the phase ~, and let a singular surface .ff separate 

into ~ +  and ~ -  in which the field ~,~P, is differentiable. It is then easy to establish 
the following transport theorem (similar to Eringen 1975, section 2.3): 

+ ;~  Iris, T,(q,, - -  w,~)]" ns ,  da,  

[6.6] 

where the jump of f2 is defined by the expression: 

[ ~ ]  ---¢2 + _ f i - .  

In [6.6] ws, is the velocity of the singular surface .9', and n~, is the unit normal vector to 
Se which points into W+. 

Application of the transport theorem [6.6] to the integral conservation laws [6. IH6.5] 
yields the differential form of the conservation laws of section 3 in W+ and "//'-, and the 
following jump conditions across the singular surface ~ :  

Conservation of mass 

~ , ( ~ .  - ws,)]" ns, = 0 

[ t , ( v -  w~, ) ] 'n~ , - -  0 .  

[6.7] 

Balance of the linear momentum 

L ~  ® ( ~  - ws,)  - T,. ln~ = 0 

Lo v ® (v - w~,) - T'Jn~. = O. 

[6.8] 
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Balance of energy 

1 TrY] "ns, 0. 

Second law of thermodynamics 

[6.9] 

[6.1o] 

The similarity of the jump conditions [6.7]-[6.10] to [2.2] is evident in the form but not 
in the principles. The above jump conditions for the mixture are identical to the results 
of Eringen & Ingram (1967) in their theory of mixtures. For the application of the above 
results on the jump conditions the reader is referred to Dobran (1983b). 

7. SUMMARY AND CONCLUSIONS 

The theory of multiphase mixtures presented in this paper is shown to be consistent with 
the theory of mixtures of Truesdell (1969) or Bowen (1976) when the interracial area is 
reduced to zero. This theory is also consistent with the physical models which are 
rigorously constructed by the volume averaging process. 

The conservation and balance equations in the theory of multiphase mixtures are 
similar to the field equations in the theory of mixtures, except that in the former theory, 
these equations contain the effect of the finite interracial area. This effect in the theory 
manifests itself through the interfacial sources (surface tension) and through the covariance 
coefficients which can be assumed to represent the nonlocal material response or the 
microstructural characteristics of the mixture. Another significant difference between the 
two theories is in the equations for the second law of thermodynamics. In the theory of 
multiphase mixtures presented in this paper, the second law of thermodynamics of each 
phase contains the entropy source term which represents the effect of the microstructural 
characteristics of the mixture, and the axiom of dissipation can be assigned for each phase. 

The multiphase field equations were examined by the principle of material frame 
indifference and the constitutive variables were identified and discussed for a particular 
constitutive assumption. The jump conditions for the multiphase mixture were also derived 
for each phase and for the mixture by postulating the integral form of the conservation 
and balance equations. 

b 
e 

c~, C k 

D~ 

N O M E N C L A T U R E  

body force of phase 
body force of the mixture defined by [3.22]2 
arbitrary time-dependent translation vector in [4.2] 
covariance coefficients defined in Appendix B 
mass supply or phase change rate of phase a defined by [3.15] 
symmetric part of velocity gradient of phase 0~ 
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F, 

GRAD 
li, 
I 

q 
Q 

r 

s 

3. 
t 

L 
T 

V~ 

V 

W~ 
X 

X~ 
x, 

energy supply or source of the mixture defined by [3.36] 
deformation gradient of phase = defined by [3.511 
GRAD F~ 
gradient with respect to the material coordinates defined by [3.5] ~.2 
entropy flux of phase ~ in [6.5] 
unit tensor 
velocity gradient of phase ~ defined by [3.6] 
angular momentum supply or source of phase • defined by [3.27] 
angular momentum supply or source of the mixture defined by [3.29]2 
linear momentum supply or source of phase 
linear momentum supply or source for the mixture defined by [3.23] 
heat flux vector of phase a 
heat flux vector of the mixture defined by [3.34]3 
time-dependent orthogonal linear transformation in [4.2] 
heat generation rate of phase 
heat generation rate of the mixture defined by [3.34]2 
entropy of phase 
entropy of the mixture defined by [3.4011 
entropy supply or source of phase 
entropy supply or source of the mixture defined by [3.40]3 
time 
stress tensor of phase 
stress tensor of the mixture defined by [3.22]~ 
diffusion velocity defined by [3.10] 
velocity of phase ~ defined by [3.411 
acceleration of phase a defined by [3.4]2 
center of mass velocity of the mixture defined by [3.9] 
acceleration of the mixture 
averaging volume 
antisymmetric part of velocity gradient of phase a 
position vector 
reference position vector of a particle of phase 
particle of phase 

Greek symbols 
g, internal energy of phase a 
~, energy supply or source of phase 
E energy of the mixture defined by [3.34], 

g, temperature of phase 
r~ reference configuration of phase 
t~, partial density of phase 
p density of mixture defined by [3.8] 

X~, deformation function of phase a defined by [3.3] 

Subscripts 
m pertains to the mixture 

~, p, 6 phase of a multiphase mixture 
total number of phases 

Superscripts 
T transpose 

- 1 inverse 
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A P P E N D I X  A 

Definition of the mapping transformation 
Figure 1 illustrates the flow field in an Euclidean space E03 which consists of continua 

at = 1 . . . . .  ~. Embedded in this space is a fixed volume ~ ,  and at time t a volume 
~ ,  = Z5 ~,~ of the phase at is contained within ~ .  The surfaces of ~,~ are a,~ and aar, 
where a~ is the surface of intersection between ~ and ~ ,  and aa6 is the surface of ~,~ 
which is fully contained within ~ .  

Consider a mapping of the averaging volume ~ in E03 into a point P ( ~ )  in E 3. That 
is, (1) associate with the space E03 the averaging volumes ~e" with the domain of definition 
contained in E03, (2) assign to each ~e" a mapping function such that its image point in E 3 
is the point P ( ~ )  with the location x, and (3) identify the centert r0 of ~ to be identical 
to the place x of P ( ~ )  such that to each distinct ~r corresponds a distinct center r0. (The 
particular selection of r0 = x reenters into the theory through the constitutive assumption 
as it is clearly evidenced by equation (3.25) for the angular momentum supply for phase 
at.) The mapping defined above is onto. It is also one-to-one, since to each point P ( ~ )  at 
the place x corresponds a unique ~ at r0 = x. 

In this appendix, the transformations which are needed in [2.4] to accomplish the above 
bijective mapping are considered. These transformations utilize Leibnitz's and Green- 
Gauss's Divergence Theorems. For this purpose, let Fa represent a differentiable field in 
~ e ,  and on ae and aar. Then with the nomenclature in figure 1 we have: 

Leibnitz's theorem 

[a.1] 

where S.~5 is the velocity of surface aA~. 
Divergence theorem. Using the Green-Gauss's divergence theorem and the fundamental 

theorem of calculus it is easy to show that 

6 ~ 6 ma , o  

[A.2] 

tThe center r 0 should be selected as the center of mass of ~e- in order to correspond to the definition of the 
center of mass velocity in [3.9]. 
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where V ° is defined in Eo 3 and V is defined in E 3 at P. The mappings [A.1] and [A.2] are 
also linear, and we thus have 

~ AL 
[A.3] 

~5 ~ mL ~L 
[A .4] 

A simple example. The transformation equations [A.1] and [A.2] are general and they 
are applicable to a phase u in the averaging volume Y" such as shown in figure 1. To clarify 
the averaging procedure summarized above consider a special case of two-phase flow 
through a duct as shown in figure 2 where the averaging volume ~ coincides with the duct 
walls and by the planes at z = z I and z = z,. The volume of phase • in ~ is ~ ,  a~(zl, t) 
and a,(z2, t) are the surfaces of intersection between Y" and ~ ,  at zt and z2 respectively, 
and a4 is the surface of Y', which is fully contained in Y'. In this case the Leibnitz's and 
Divergence Theorems can be written as follows: 

-~-  = ~ F, dY" - F.S.-  n~ da,  
a A 

[a.5] 

f~.V'F.d'V'=fo F.'n~da+f~,2.oF.'n:da-f~.~:,.oF.'n:da" [A.6] 

But, by the fundamental theorem of calculus, 

0 

and [A.6] reduces to 

V. F. d ~  = ~z F~. nz d'K" + F~. n~ da.  [A.8] 

Comparing [A.5] and [A.8] with [A.1] and [A.2] it can be seen that the former equations 
are a special case of the latter equations. 

Z 2 

Z I 

nz / -aa{z2 , t  J 

/ _ a A  

SA .--Duct 

Figure 2. A simple case of two-phase flow through a duct. 
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APPENDIX B 
The covariance coefficients 

This appendix lists the covariance coefficients which appear in the paper. 

c,, = 7 (p,v, ® v,) - p,~, ® ~, 

1 .-.._ c~.. = _~_/p,(E= ~ ' f ' =  + l  v=.v=)v,)-/3,(~, + ~ v=-v=),= 

c,~ = - ~  <p,v,. =,,> - ~=¢,. G, 

"//'=/o=r,\ ~.'~ 
c'°=7\ o,/-T~ 

In the above expressions, the density-weighted mean values and the mean values over 
the volume are defined respectively by 

£ =  <p/,> l ~ ,  

?o= <i,> 

APPENDIX C 

On the modeling of  linear momentum supply or source ~= and its consequences 
It is common in the two-phase flow modeling (see, for example, Ishii 1975) to perform 

a reduction of the linear momentum supply or source ~, expressed by [3.20] by 
decomposing the stress tensor T~ into the pressure P~ and viscous stress ~ ,  i.e. 

T=6 -- - P=6I + *=6. [C. 1] 

Substituting for F~ ffi I in [A.4] results in the following equation 

1 
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Assuming that the pressure P~ in [C.1] when integrated over the interracial area is equal 
to an average interracial pressure P~ and using above equations in [3.20] results in the 
following expression for ~,: 

,t,) 

[c.3] 

Equation [C.3] leads to important consequences when it is substituted into [3.19] and 
when the stress tensor T~ is assumed to be decomposed as follows: 

+ [(2.4] 

where /'~ is the pressure and i~ is the viscous stress tensor for phase ~. With these 
substitutions, [3.19] becomes 

[c.Sl 

where ~ is defined by [C.3]. If, however, only the decomposition [C.4] is invoked in [3.19] 
then this equation is reduced to 

[c.oq 

Equations [C.5] and [C.6] differ from each other in three important ways: (1) in [C.5] 
the volumetric fraction ( ~ , / ~ )  is outside of the gradient of pressure, whereas in [C.6] it 
is inside the gradient; (2) the two momentum supplies ~, and ~ are defined differently (cit. 
[C.3]) and, therefore, are expected to be represented by different constitutive equations; and 
(3) [C.5] contains the effect associated with the imbalance of pressures across the interfaces. 
In the two-phase flow modeling it is usually assumed that Pi - P, and argued on physical 
grounds that [(2.5] is a better equation to use than [C.6] (Harlow & Amsden 1975; 
Lyczkowski et al. 1978, among others). Equation [C.5] was also used by Homsy (1983) with 
Pi - Pfluid in modeling the fluid-particle suspensions. 

Lyczkowski et  al. (1978) used [C.5] and [(2,6] with P t - - P , - - P ( V . ~  was modelled 
through a wall shear stress term) to study the stability properties. They also assumed that 
the linear momentum supplies or sources ~ and ~ are equal to each other and that they 
can be modeled through a relative velocity effect (the viscous drag force) and a relative 
acceleration effect (the virtual mass force). The study showed that the solution space with 
real characteristics is larger for [C.6] than for [C.5] and that both equations yield in some 
solution domain the complex characteristics. The real characteristics are necessary (but not 
sufficient) for a well-posed initial value problem, while the complex characteristics produce 
an ill-posed initial value problem that is unsatisfactory because all finite difference schemes 
constistent with the differential equations are unstable (Richtmyer & Morton 1967). 

The above controversy in modeling the momentum equation can be due to the 
premature assumptions invoked in modeling the momentum supply or source ~ and stress 
tensor I', in equation [3.19]. A reasonable way to construct the constitutive equations for 
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these variables is to require that they depend on the kinematical variables appearing in 
the conservation and balance equations and demanding then that such a constitutive 
assumption should be consistent with a change of frame transformation. In section 5 of 
the paper this procedure is indeed followed, and in Dobran (1984) the constitutive 
equations for a multiphase mixture of fluids are studied in greater detail. 


