Steady-state characteristics and stability thresholds of a closed two-phase thermosyphon

FLAVIO DOBRAN
Stevens Institute of Technology, Hoboken, NJ 07030, U.S.A.

(Received 12 June 1984 and in final form 13 November 1984)

Abstract—An analytical investigation is presented for the purpose of determining the steady-state characteristics and stability thresholds of a closed two-phase thermosyphon. The analytical model is based on a lumped parameter description of the system that includes the thermohydraulics of vapor core, liquid film, and liquid pool of the evaporator. The steady-state solutions and the linear stability analysis of the governing equations revealed the existence of two operating limits: one associated with flooding and the other with drying of the liquid in the evaporator. A parametric study was also performed to determine the effects of heat pipe geometry, liquid filling, and fluid characteristics on the operating limits. The comparison of the predicted limiting heat fluxes of flooding and dry-out with the experimental data also was performed.

1. INTRODUCTION

A closed two-phase thermosyphon is a gravity-assisted wickless heat pipe with liquid reservoir at the bottom. The addition of heat to the liquid causes the liquid to evaporate; the vapor rises to the top of the tube where it is condensed and the condensate returns to the evaporator section by gravity as a falling liquid film. This leaves the liquid film thin and at large axial and small radial heat fluxes, it is possible to achieve the liquid film boiling or critical heat flux limit. This limit is similar to the critical heat flux condition in pool boiling and it also leads to a temperature excursion of the tube surface [7, 11].

With large liquid fillings in long thermosyphons and at large axial and small radial heat fluxes, it is possible to establish another operating limit, the so-called entrainment or flooding limit. This limit occurs due to the instability of the liquid film generated by the high value of the interfacial shear which gives rise due to the high vapor velocity induced by high heat fluxes. The high vapor shear gives rise to the entrainment of liquid from the film into the vapor core and, consequently, to a flooding condition. This leaves the liquid thin and the evaporator surface can become dry resulting again in wall temperature excursion or limiting system operation. By increasing the heat flux above the flooding limit, it is possible to achieve the liquid film flow reversal leading to: (1) the accumulation of liquid in the condenser; (2) falling of the accumulated liquid due to gravity to the evaporator; (3) establishment of a film flow situation again; and (4) the occurrence of flooding and film flow reversal whereby the cycle repeats itself [11]. Since this process has associated with it large pressure and temperature oscillations of the fluid (on the order of 300°C), the heat flux condition leading to this system operation is referred to as the oscillation limit [11].

From the above, it is clear that the operating limits of a closed two-phase thermosyphon depend on many parameters. These are the input heat flux rate to the evaporator and its distribution, geometry of the thermosyphon, working fluid, liquid filling and operating pressure or temperature of the fluid. While it is possible to model analytically various limiting situations of a closed thermosyphon separately (dryout, critical heat flux, and flooding), it has not yet
proved feasible to predict quantitatively within one model the occurrence of more than one limiting condition as a function of the arbitrary parameters of the system. Although a considerable data base already exists on the two-phase thermosyphons, it should be noted that some of these data are incomplete and cannot be utilized for the verification of more complex models, and much more data are clearly needed not only to delineate stable and unstable regions of operation as a function of the parameters of the system enumerated above, but also to guide the analysts in the construction of more sophisticated physical models for the prediction of steady-state and transient system behaviors.

The objective in this paper is to construct a model of the hydrodynamic and heat transfer processes of a closed two-phase thermosyphon in order to determine the steady-state and stability thresholds as a function of independent system parameters. For this purpose, a simple lumped parameter description of the system is performed and the resulting mathematical model is examined for stability limits. It is found that the model yields two types of heat flux limits: one that is associated with the dry-out of the liquid pool and the other which is associated with the instability of the liquid film or flooding.

2. ANALYSIS

A typical operating condition of a closed two-phase thermosyphon is illustrated in Fig. 1(a). The thermosy-

Fig. 1. (a) Actual two-phase flow in a thermosyphon; (b) idealized flow in a thermosyphon.
Analytical investigation of a two-phase thermosyphon

The thermosyphon consists of an internal pipe diameter \(D = 2R \), length \(l \), and of the evaporator and condenser sections at the pipe bottom and top, respectively. Due to the heat addition in the evaporator, the liquid evaporates from the liquid pool and film regions; the vapor rises along the central core region of the pipe and is condensed on the wall in the condenser portion. The liquid then drains by gravity along the pipe surface to the liquid pool. In reality, the liquid film thickness is not uniform (due to the evaporation and condensation) and usually not smooth, and may be covered by a complex system of waves. However, for the purpose of constructing a model, it will be assumed that the film can be represented by an average film thickness \(\delta \) as illustrated in Fig. 1(b). The vertical distance from the top of the pipe to the liquid pool surface will be denoted by \(z \), the average film temperature by \(T_e \), and the liquid pool and vapor core are assumed to be saturated at \(T_s \). The film is also assumed to be thin, \(\delta \ll R \), and the operation of the thermosyphon away from the thermodynamic critical point, \(\rho / \rho_c \ll 1 \).

2.1. Lumped parameter analysis

Denoting by \(\Gamma \) the mass flow-rate of vapor condensation per unit tube periphery \(2\pi R \) onto the liquid film and by \(\Gamma \), the mass flow-rate of liquid per unit tube periphery flowing (at \(z \)) into the liquid pool, we have from the control volume mass and energy balances on the liquid film and pool:

\[
\frac{d\delta z}{dt} = \frac{\Gamma - \Gamma}{\rho_\ell}
\]

\[
\frac{d\delta z}{dt} = \frac{\Gamma - \Gamma}{\rho_\ell} [h_{\ell,\ell} - C_L(T_e - T_f)] - \frac{Q_l}{2\pi R \rho_\ell C_L}
\]

\[
\frac{Q_l}{h_{\ell,\ell}} \frac{d\delta z}{dt}
\]

\[
\Gamma_L = \frac{2\pi R [h_{\ell,\ell} - C_L(T_e - T_f)]}{2\pi R C_L}
\]

where \(Q_l \) is the heat supplied to the evaporator.

Similarly, a control volume momentum balance on the liquid film and vapor core yields:

\[
2\rho_\ell \frac{d^2z}{dt^2} = \frac{d}{dt} \left(\Gamma_L \left(1 - \frac{\rho_\ell}{\rho_c} \frac{\delta}{R} \right) \right) + 2 \frac{\rho_\ell}{\rho_c} \frac{\delta}{R} \Gamma_c z - \frac{f_w}{f_w} \left(f_w \frac{\delta}{R} \right)
\]

\[
+ \left(\frac{f_i}{f_i} \right) \left(4 \rho_\ell \frac{\delta}{R} \frac{\rho_L}{\rho_c} \right) + \frac{\Gamma_L}{\rho_\ell} \left(\Gamma_c z - \Gamma_L \right) \times \left(1 - \frac{\rho_\ell}{\rho_c} \frac{\delta}{R} \right) \left(f_w \right) \left(f_w \right)
\]

\[
+ 2 \rho_\ell \frac{\delta}{R} \left(\frac{f_i}{f_i} \right) \left(4 \rho_\ell \frac{\delta}{R} \frac{\rho_L}{\rho_c} \right) \frac{\delta}{R} \left(1 + \frac{\rho_L}{\rho_c} \frac{2\delta}{R} \right)
\]

\[
+ g \frac{\delta}{R} \rho_\ell + \frac{\rho_\ell}{\rho_c} \rho_\ell \left(\frac{d\delta z}{dt} \right)^2
\]

where \(f_w \) and \(f_i \) are the wall and interfacial friction coefficients, respectively, and \(f_w \) and \(f_i \) are their corresponding laminar values. The wall and interfacial shear stresses used in the momentum equation (4) are of the form:

\[
\tau_w = \left(\frac{f_w}{f_w} \right)^2 \frac{2\rho_\ell}{\delta} \left(\rho_\ell \frac{d\delta z}{dt} \right)
\]

\[
\tau_i = \left(\frac{f_i}{f_i} \right) \frac{4\mu_\ell}{R} \left(\rho_\ell \frac{d\delta z}{dt} \right)
\]

There is one additional equation expressing the conservation of mass of the total fluid in the thermosyphon that has to be used, i.e.

\[
\frac{Q_l}{\pi R^2} = \frac{1}{2} - \left(1 - \frac{\delta}{R} \right)^2 \left(1 - \frac{\rho_L}{\rho_c} \right) \approx \frac{1}{2} - \left(1 - \frac{\delta}{R} \right)^2
\]

\(Q_L \) in this equation is the (volumetric) liquid filling and it is an independent parameter of the system. The system of nonlinear equations (1)-(7) is sufficiently complex and its solution will not be investigated in this paper. Instead, only a special case corresponding to the saturated liquid film will be considered below.

Assuming that \(T_e = T_f \) in the above equations and performing the nondimensionalization of these equations according to:

\[
x^* = \frac{z}{R}, \quad x^* = \frac{\delta z}{R^2},
\]

\[
x^* = \frac{\rho_\ell}{\mu_\ell} \frac{d\delta z}{dt} / Q_l, \quad t^* = t / Q_l R^3
\]

\[
\Gamma^* = \frac{\Gamma}{\rho_\ell R h_{\ell,\ell}}, \quad \Gamma^* = \frac{\Gamma}{\rho_\ell R h_{\ell,\ell}}
\]

\[
Q^* = \frac{Q_l}{\rho_\ell h_{\ell,\ell} R h_{\ell,\ell}}, \quad N^* = g \frac{D_i^2 \rho_\ell \rho_L}{\mu_\ell}, \quad h^* = \frac{Q_L}{\rho_\ell R^3}, \quad r^* = \frac{l}{R},
\]

results in the following system of equations:

\[
\Gamma^* = \frac{1}{2\pi}
\]

\[
\Gamma^* = \frac{1}{2\pi} - \frac{1}{2} x^* = \frac{\Gamma}{\rho_\ell R h_{\ell,\ell}} - \frac{1}{2} x^* \]

\[
\frac{\rho_\ell}{\mu_\ell} \frac{d\delta z}{dt} = \frac{1}{2} x^*
\]

\[
\frac{d\delta z}{dt} = \frac{1}{2} x^*
\]
\[
\frac{dx_2^*}{dt^*} = \frac{1}{2[2\gamma^2 - (l^*-h^*)]} \left\{ -2x_2^* \left[\Gamma_0^* \left(1 - \frac{4}{\rho^* x_1^*} \right) + \rho^* \frac{x_1^*}{x_2^*} \right] \\
+ \frac{\rho^* x_1^*}{\pi x_2^*} + \frac{1}{Q^*} \left(\frac{f_f}{f_{i1}} \right) \left(\frac{f_{i1}}{f_{i2}} \right) \left(\frac{4}{\rho^* x_1^*} \right) \right\} \\
+ 2\Gamma_0^* \left(\frac{x_1^*}{x_2^*} \right)^2 + \frac{1}{Q^*} \left(\frac{f_f}{f_{i1}} \right) \left(\frac{2}{\rho^* x_1^*} \right) \left(\frac{x_1^*}{x_2^*} \right) \left(1 + \frac{1}{\rho^* x_1^*} \right) \\
+ \frac{2}{\rho^* x_1^*} \frac{x_2^*}{256(Q^*)^2} \right\}
\]
\]
Equations (11)-(15) have to be closed by specifying the constitutive equations for \(\frac{f_f}{f_{i1}} \) and \(\frac{f_f}{f_{i2}} \) for turbulent flow in the liquid film and vapor core, and to determine whether the flow is laminar or turbulent a decision can be made based on the Reynolds numbers for the liquid film, \(Re_L \), and vapor core, \(Re_p \), i.e. (ref. [12])

\[
Re_L = \frac{32Q^*}{\mu^*} \left(\frac{x_1^*}{x_2^*} \right)^2 \begin{cases} < 1000 & \text{laminar flow} \\ \geq 1000 & \text{turbulent flow} \end{cases}
\]

\[
Re_p = \frac{16}{\mu^*} \frac{Q^*}{\mu^*} \left(\frac{x_1^*}{x_2^*} \right)^2 + \frac{x_2^*}{x_1^*} \begin{cases} < 2300 & \text{laminar flow} \\ \geq 2300 & \text{turbulent flow} \end{cases}
\]

For thin and turbulent liquid films, it can be assumed [12] that the wall friction coefficient can be expressed by the Blausius formula,

\[
\left(\frac{f_f}{f_{i1}} \right)_{\text{turb}} = 0.079 \frac{32Q^*}{16} \left(\frac{\Gamma_0^* + \frac{x_2^*}{x_1^*}}{x_1^*} \right)^{0.75},
\]

whereas to model the interfacial friction coefficient, it is necessary to take into consideration the countercurrent flow of liquid and vapor. For this purpose, Bharathan et al.'s [13] correlation for \(\frac{f_f}{f_{i1}} \) will be utilized which was determined on the basis of air-water flooding data for wide range of pipe diameters and liquid and gas flow-rates. Thus

\[
\frac{f_f}{f_{i1}} = \frac{Q^*}{\mu^*} \left[0.005 + u_t \left(\frac{N_L^* Ca^{1/2}}{2} + \frac{x_1^*}{x_2^*} \right)^{-1} \right] \times \left(\frac{\Gamma_0^*}{2 + \frac{\rho^* x_1^*}{x_2^*}} \right) + \frac{x_2^*}{x_1^*} \left(\frac{x_2^*}{x_1^*} \right)^2 + \frac{x_2^*}{\rho^* x_1^*} \left(\frac{x_2^*}{256(Q^*)^2} \right)
\]

\[
\text{and}
\]

\[
Ca = \frac{\mu^2_2}{\sigma \rho D}
\]
is the capillary number which represents the ratio of viscous to surface tension forces. Note that the group of parameters \(N_L^* Ca^{1/2} \) is referred in the literature as the Bond number [13].

Equations (11)-(22) form a closed system of equations for the investigation of transient response of the thermosyphon with the arbitrary system parameters as follows:

\[
Q^* \quad \text{heat supply parameter} \\
N_L^* \quad \text{two-phase Grashof number} \\
Ca \quad \text{capillary number} \\
\rho^* \quad \text{density ratio (or buoyancy number,} \\
Bo = 1 - \rho^*) \\
\mu^* \quad \text{viscosity ratio parameter} \\
h^* \quad \text{liquid filling charge parameter} \\
l^* \quad \text{tube length parameter}.
\]

\[
\text{Steady-state analysis. A particularly simple solution can be obtained for the steady state where} \ x_1^* = 0, \ x_2^* = 0, \ x_3^* = x_4^* = x_5^* = x_6^* = x_7^* = x_8^*. \ \text{In this situation, from equation (12) \ x_2^* = 1/2 \pi} \ \text{and equation (15) is reduced to}
\]

\[
Q^* \left[\frac{2}{\pi \mu^*} \left(\frac{x_3^*}{x_4^*} \right)^2 \right]^2 - Q^* \left(\frac{f_f}{f_{i1}} \right) \left(\frac{x_3^*}{x_4^*} \right) \left(\frac{x_3^*}{x_4^*} + \frac{\mu^*}{\rho^*} \left(\frac{x_3^*}{x_4^*} \right) \left(\frac{x_3^*}{x_4^*} \right) \right) \\
+ \left(\frac{f_f}{f_{i1}} \right) \left(\frac{x_3^*}{x_4^*} \right) \left(\frac{\mu^*}{\rho^*} \left(\frac{x_3^*}{x_4^*} \right) \left(\frac{x_3^*}{x_4^*} \right) \right) + \left(\frac{\mu^*}{\rho^*} \left(\frac{x_3^*}{x_4^*} \right) \left(\frac{x_3^*}{x_4^*} \right) \right) = 0.
\]

\[
\text{From equation (13) we can solve for } x_4^* = \frac{l^* - h^*}{1 - 2 \frac{x_2^*}{x_4^*}},
\]

and thus eliminate the dependence of equation (24) on the variable \(x_4^* \). With this substitution, the physical \(Q^* \geq 0 \) solution space of equations (18), (19) and (24) appears as illustrated in Fig. 2 in a plot of the heat input parameter \(Q^* \) vs the steady-state film thickness \(x_3^*/x_4^* \) as a function of the two-phase Grashof number \(N_L^* \) and liquid filling charge parameter \(h^*/l^* \) for fixed values of \(Ca, \rho^*, \mu^* \) and \(l^* \). As shown in Fig. 2, when \(Q^* = 0 \) then \(x_3^*/x_4^* = 0 \) as it is physically required, but an increase in the heat flux causes the film thickness also to increase. However, for a given value of \(N_L^*, Ca, \rho^*, \mu^*, l^* \) and sufficiently large \(h^*/l^* \), there is a maximum value of the heat flux which, as shown below, corresponds to the entrainment limiting operation of a thermosyphon. The film thickness can be increased until \(x_3^* = l^* \) at which point the liquid pool becomes dry. This film thickness can be determined from equation (13), i.e.

\[
\frac{x_3^*}{x_4^*} = 1 - \frac{l^* - h^*}{2 l^*} = \frac{h^*}{2 l^*},
\]

and, therefore, the limiting solution of equation (24) can be expressed in terms of \(h^*/l^* \) as shown in Fig. 2 with
vertical dotted lines. Notice that at low liquid fillings ($h^*/l^* \ll 1$), the dry-out of the liquid pool can occur before achieving the maximum heat flux condition (point A, for example, in Fig. 2 on the curve $N_L = 40,000$), whereas at large liquid fillings (point B), the steady-state solution predicts a maximum heat input to the evaporator that will sustain the steady state (at point C). As N_L decreases due to a decrease in the tube diameter, for example, $(Q_f^*)_{\text{max}}$ is reduced and shifted towards a larger film thickness. The effect of increasing the system pressure or increasing p^* is to increase the maximum heat flux with other parameters remaining the same and is not shown in Fig. 2. It is clear from Fig. 2 that an increase in Q_f^* above its maximum value $(Q_f^*)_{\text{max}}$ for fixed values of the remaining independent parameters cannot yield a steady-state solution since no film thickness exists which can maintain this new heat flux, and at this point the system operation may shift to a different state which may be either stable or unstable. With a given filling charge of $h^*/l^* = 0.1$ and $N_L = 40,000$ in Fig. 2, there are two different film thicknesses corresponding to the same heat flux; for example, $(Q_f^*)_D = (Q_f^*)_{D'}$. This means that fluctuations in the film thickness of sufficient magnitude may be able to produce the system operation between points D and D'. Figure 3 illustrates this in a plot of the nondimensional interfacial shear obtained from equation (6),

$$
\tau^{*}_{10} = \frac{\tau_{10}}{\rho_1 \sigma R} = \frac{128{(Q_f^*)^2}}{\rho^* N_L^2} \\
\times \left[0.005 + u_1 \left(\frac{N_L^2 Ca^{1/2} x_{10}^*}{\sigma} \right)^{\mu_1} \right] \\
\times \left[\frac{1}{2\pi} \left(2 + \rho^* \frac{x_{10}^*}{x_{20}^*} \right)^2 \right]
$$

vs the heat input parameter Q_f^* as a function of N_L, Ca, ρ^*, μ^*, l^* and h^*/l^*.

To investigate analytically the dynamics of the liquid film and pool in a thermosyphon, it is necessary to investigate the solution of the nonlinear equations (11)-(19). In this paper, however, only the results from a linearized analysis will be discussed.

Linearized stability analysis. Equation (15) can be linearized about the equilibrium state x_{10}^*, x_{20}^* and...
where \(f(x_{10}, 0) = 0 \) represents the steady-state solution expressed by equation (24), whereas \(A_{21} = \frac{\partial f}{\partial x^*_1} \big|_{0} \) and \(A_{22} = \frac{\partial f}{\partial x^*_2} \big|_{0} \) are evaluated at the steady-state values of \(x^*_1 \) and \(x^*_2 \). \(F(x^*_1, x^*_2) \) denotes the nonlinear terms in the series expansion of equation (28). Since also from equation (8) we have that

\[
\frac{dx^*_1}{dt^*} = x^*_2,
\]

(29)

where \(f(x_{10}^*, 0) = 0 \) represents the steady-state solution expressed by equation (24), whereas \(A_{21} = \frac{\partial f}{\partial x^*_1} \big|_{0} \) and \(A_{22} = \frac{\partial f}{\partial x^*_2} \big|_{0} \) are evaluated at the steady-state values of \(x^*_1 \) and \(x^*_2 \). \(F(x^*_1, x^*_2) \) denotes the nonlinear terms in the series expansion of equation (28). Since also from equation (8) we have that

\[
\frac{dx^*_1}{dt^*} = x^*_2,
\]

(29)

where \(f(x_{10}^*, 0) = 0 \) represents the steady-state solution expressed by equation (24), whereas \(A_{21} = \frac{\partial f}{\partial x^*_1} \big|_{0} \) and \(A_{22} = \frac{\partial f}{\partial x^*_2} \big|_{0} \) are evaluated at the steady-state values of \(x^*_1 \) and \(x^*_2 \). \(F(x^*_1, x^*_2) \) denotes the nonlinear terms in the series expansion of equation (28). Since also from equation (8) we have that

\[
\frac{dx^*_1}{dt^*} = x^*_2,
\]

(29)

The necessary and sufficient conditions for the above system of equations to yield stable steady-state solutions are that the eigenvalues of the characteristic equation, \(\det |A - \lambda I| = 0 \), have negative real parts. The analysis shows that, as the heat flux to the evaporator is increased, there is a progressive loss of stability of the system (the eigenvalues of equation (30) became less negative) and that the steady-state solution becomes unstable when the liquid pool dries out, that is when \(x_{10}^* = l^* \) and \(\phi^* < (\phi^*)_{\text{max}} \). The steady state is also unstable for large liquid fillings when \(\phi^* > (\phi^*)_{\text{max}} \), since at this point one of the eigenvalues has a turning point from the negative to the positive value. The instability of the system at large liquid fillings and at the maximum values of heat fluxes shown in Fig. 2 is also consistent with the experimental observations and, as discussed below, it can be physically associated with the entrainment or flooding limiting operation of the thermosyphon.

3. DISCUSSION AND COMPARISON OF THE ANALYTICAL RESULTS WITH EXPERIMENTS

The analytical results of the limiting input heat fluxes to the evaporator, \(\phi^* \), presented and discussed in the previous section, are compared with the experimental data in this section. Much of the data in the literature pertaining to the limiting heat fluxes cannot be used for the comparison with the analytical results either because of the lack of complete parameter specification in the experiments as required by the model [equation...
Table 1: Comparison between the experimental and predicted heat fluxes and their dependence on the system parameters

<table>
<thead>
<tr>
<th>Reference</th>
<th>(\frac{Q}{h_{\text{max}}})</th>
<th>(\frac{Q}{h_{\text{crit}}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fukano et al. [11]</td>
<td>1.15</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
</tr>
<tr>
<td>Nguyen-Chi and Groll [10]</td>
<td>80</td>
<td>0.55</td>
<td>28.300</td>
<td>7.24 × 10^{-4}</td>
<td>6.23 × 10^{-4}</td>
<td>2.63 × 10^{-4}</td>
<td>6.23 × 10^{-4}</td>
<td>2.63 × 10^{-4}</td>
</tr>
</tbody>
</table>
demonstrate, nevertheless, that the limiting heat fluxes expressed in terms of three different correlations associated with the liquid film hanging and film inversion. They identified three distinct limiting heat fluxes connected to a large reservoir at the bottom filled with liquid. The limiting heat fluxes at low liquid fillings, since no physics is built into the model to achieve this prediction. Bezrodnyi and Volkov’s [9] comparison analytically for the prediction of these limiting heat fluxes leads in general to lower critical fluxes than those corresponding to the saturated liquid film. A linear stability analysis predicts the loss of stability of the system as the heat flux is increased to the evaporator and leading to an instability when the liquid pool dries out and when the flooding condition is established in the thermosyphon. The steady-state distribution of the input heat flux parameter, \(Q^* \), as a function of the film thickness and independent parameters of the system \((N_d, Ca, h^*, \rho^* \text{ and } \mu^*) \) shows the existence of a maximum heat flux for large fillings, whereas for small fillings no such maximum is predicted. Based on a comparison of the model predictions with the experimental data, it is shown that the predicted maximum heat flux can be associated with the entrainment or flooding heat flux limit. A nonlinear analysis of the general model presented in the paper has not been performed to examine the system of equations which may yield an oscillatory behavior such as the one experimentally observed and labelled as the oscillation limit. Clearly, the conditions affecting the limiting operation of a thermosyphon are very complex, and many more careful experiments are needed to understand the limiting system operation under the increasing and decreasing heat fluxes.

4. CONCLUSIONS

An analytical model has been presented to study the steady state and stability thresholds of a closed two-phase thermosyphon. Although the derived model accounts for the subcooling of the liquid film and nonlinear thermohydrodynamic interaction between the liquid film and vapor core in the thermosyphon, only a special case of this model has been investigated corresponding to the saturated liquid film. A linear stability analysis predicts the loss of stability of the system as the heat flux is increased to the evaporator and leading to an instability when the liquid pool dries out and when the flooding condition is established in the thermosyphon. The steady-state distribution of the input heat flux parameter, \(Q^* \), as a function of the film thickness and independent parameters of the system \((N_d, Ca, h^*, \rho^* \text{ and } \mu^*) \) shows the existence of a maximum heat flux for large fillings, whereas for small fillings no such maximum is predicted. Based on a comparison of the model predictions with the experimental data, it is shown that the predicted maximum heat flux can be associated with the entrainment or flooding heat flux limit. A nonlinear analysis of the general model presented in the paper has not been performed to examine the system of equations which may yield an oscillatory behavior such as the one experimentally observed and labelled as the oscillation limit. Clearly, the conditions affecting the limiting operation of a thermosyphon are very complex, and many more careful experiments are needed to understand the limiting system operation under the increasing and decreasing heat fluxes.

REFERENCES

Analytical investigation of a two-phase thermosyphon

CARACTERISTIQUES STATIONNAIRES ET FRONTIERES DE STABILITE D’UN THERMOSYPHON DIPHASIQUE ET FERME

GESCHLOSSENER ZWEI-PHASEN-THERMOSYPHON — DAS VERHALTEN IM STATIONÄREN ZUSTAND UND DIE STABILITÄTSGRENZE

СТАЦИОНАРНЫЕ ХАРАКТЕРИСТИКИ И ПОРОГИ УСТОЙЧИВОСТИ ЗАМКНУТОГО ДВУХФАЗНОГО ТЕРМОСИФОНА

Аннотация — В работе представлено аналитическое исследование стационарных характеристик и порогов устойчивости замкнутого двухфазного термосифона. Аналитическая модель основана на описании системы с помощью сосредоточенного параметра, которое учитывает термогидравли-