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Preface

The purpose of this monograph is to present a theory of multiphase
mixtures with structure. The development of the theory is guided by phys-
ical principles without the sacrifice of mathematical rigor. The starting
point in the development of the theory is based on the author’s previous
work, utilizing the volume averaging approach to motivate the construc-
tion of the theory. In the monograph, this basic idea is exploited further to
introduce an additional set of transport equations for the purpose of mod-
eling the structural properties of the mixture. As such, much of the mate-
rial presented in the book is new and it should be useful for further work
by graduate students and applied mathematicians and scientists. These
studies may involve constitutive equations, wave propagation, numerical
solution of partial differential equations, turbulence, and extensions of the
theory to include higher order material deformations.

The prerequisite to understanding the mathematics in this book requires
an elementary knowledge of algebra, geometry, and calculus. It should be
readily accessible to students having backgrounds in fluid mechanics and
thermodynamics in which they have been exposed to the cartesian tensor
analysis. To make the book selfcontained, an appendix is provided in
which the basic mathematical notions of algebra, geometry, and calculus
are reviewed. The employed notation is by no means established in the
field, but the one chosen has been extensively used in the literature of the
single phase multicomponent mixture theories and many workers in this
field are familiar with it.

The book is divided into eight chapters. Chapter one summarizes impor-
tant historical milestones leading to the development of structured models
of multiphase mixtures. In particular, the need for reconciliation between
different approaches in modeling multiphase mixtures and the inclusion
of structural characteristics of mixtures within the theory are discussed
and a set of objectives for the book are stated. The development of the
theory is carried out in chapter two, whereas in chapter three this develop-
ment is continued on the basis of a very general principle of the material
deformation with respect to the center of mass of each phase. The re-
striction of the resulting set of field equations by the principle of material
frame-indifference is discussed in chapter four. The special cases of the field
equations are compared with the existing models in chapter five. Chapter
six includes the development of concepts and principles of the constitu-
tive theory which is used in chapters seven and eight to study constitutive
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equations. The latter chapters include discussions of special results for
two-phase mixtures involving compressible and incompressible phases, and

concentrated and dilute suspensions with and without negligible inertial
effects.

New York City

Flavio Dobran
May, 1989.
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CHAPTER 1

INTRODUCTION

The purpose of this chapter is to summarize significant historical mile-
stones dealing with the formulation of theories of structured multiphase
mixtures. After this presentation, the most significant open problems deal-
ing with the formulations are stated so that these may become the guiding
principles in the development of the theory. The last section in the chapter
summarizes the general scheme of notation and presents a list of symbols
used in the monograph.

1.1 Historical Milestones

A multiphase mizture is characterized by the well-defined interfacial areas
between the constituents of the mizture, with each phase having a smoothly
varying chemical composition and steep gradients of properties close to the
interface. The interface between the phases is usually only a few molec-
ular diameters thick, across which mass, momentum and energy transfer
processes take place. A multicomponent mizture differs from a multiphase
mixture in that no steep gradients of properties between the constituents
of the mixture can be macroscopically discerned. In the mathematical
modeling of multiphase mixtures it may be reasonable, therefore, to utilize
the continuum field equations in each phase, and provide the boundary
conditions between the phases by another set of continuum field equations
derived on the assumption that the interface can be modeled as a surface of
discontinuity (ERINGEN,1975), or that the three-dimensional region of the
interface can be assigned with appropriate density and fluxes (DEEMER &
SLATTERY,1978). Due to the complexity of continuum field equations and
a large number of interfaces which are commonly present in a real multi-
phase flow, the modeling approach described above must be abandoned in
favor of a more practical one.

Two modeling approaches, both of which ignore the three-dimensional
interfacial structure, have been extensively used in the formulation of prac-
tical models of multiphase mixtures. These are: (1) theories of mixtures
based on the averaging procedure, and (2) theories constructed on the basis
of single phase multicomponent mixtures or postulatory theories of mul-
tiphase mixtures. The former theories are constructed by averaging the
local macroscopic conservation and balance equations of each phase over



2 INTRODUCTION

suitable time and space segments and using the averaged variables for the
description of the mixture dynamics and energetics. In the postulatory
approach the formulation of multiphase mixture field equations is basi-
cally postulated or guided by the theory of single phase multicomponent
mixtures or “generalized variational principles.”

The result from the space and time averaging approaches is that the
resulting averaged equations are all similar to each other, with the differ-
ence between them being expressed by the interpretation of the averaged
field variables. Beyond this apparent similarity there are other serious
difficulties associated with the area, segment, and time averaging proce-
dures that render these averaging approaches undesirable. These difficul-
ties pertain to singularity problems in the resulting equations when inter-
faces become stationary in the flow and the difficulty associated with using
the principle of material frame-indifference in the time-averaged equations
(DOBRAN,1985a). For these reasons, DOBRAN (1984a,1985a) advocates
the use of the volume averaging approach for the purpose of giving the
theory of multiphase mixtures an ezistence property, or motivating the
construction of a theory by physical arguments that are well-established.
This volume averaging approach is then shown to assign a mapping trans-
formation from the Euclidean space which contains the phases of a mul-
tiphase mixture into points of a subspace of the original Euclidean space,
where at every point of this subspace coexist all phases of the mixture as
superimposed continua. The theory constructed in this way is shown to
be consistent with the theory of single phase multicomponent mixtures
(BOwWEN,1976) when the interfacial structure of phases is disregarded.
The apparent drawback of the averaging procedure is that the averag-
ing process destroys the local structural information of the mixture - an
information that somehow needs to be suitably accounted in the theory.
The structural properties of multiphase mixtures in the averaged theories
have been accounted principally in the constitutive equations. BEDFORD
& DRUMHELLER (1983) and DOBRAN (1984b) discuss this in greater detail
and these works should be referred to for specific examples.

The theories of multiphase mixtures based on various postulates are
also superimposed continua models, except that their motivation is clouded
by the single phase multicomponent mixtures, generalized variational ap-
proaches, and specialized models of the alleged material deformation. The
structural characteristics of multiphase mixtures in these theories are ac-
counted through the use of additional transport equations as well as by the
constitutive equations. The use of additional transport equations to model
the structural characteristics of mixtures has been advocated by GOODMAN
& CowiIN (1972), PAssMAN (1977), and AEMADI (1985), among others.
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The inclusion of additional balance equations within the framework of the
classical theory based on the balance of mass, momentum, energy, and
entropy inequality to model the mixture’s structural characteristics should,
of course, have a strong foundational basis. At the present, however, the
number and form of these equations is a speculation, although the selec-
tions appear to be guided by reasonable physical arguments. The modeling
of structural characteristics of mixtures by the additional balance equations
is preferable to the modeling by the constitutive equations, since the former
equations are required to be satisfied by arbitrary thermokinetic processes
within the restrictions imposed by the extrinsic and intrinsic sources.

When the length scale of an external physical effect or disturbance is
comparable to the size of an average grain or particle in a mixture, the
intrinsic motions of grains should be taken into consideration in the gross
description of the material behavior. The early work in this area was
concerned with the solid material with internal structural properties or
polar materials, and dates back to the COSSERAT (1909) brothers who
formulated a theory of deformable bars, surfaces and bodies, with each
point in the body endowed with vectors (or directors in the language of
TRUESDELL & NoLL (1965)), for the purpose of accounting within the
generalized theory of elasticity the body couples and couple stresses, since
the CAUCHY’s second law of motion on the symmetry of stress tensor
excludes these notions from the existence. With the realization of the pos-
sibility for the existence of nonsymmetric stress tensors in structured ma-
terials came the need for the generalization of the concepts of momentum
and energy, and the proposals for additional balance equations. Further
significant works in this direction to construct theories of structured me-
dia may be traced to GRAD (1952), polyatomic gases; ERICKSEN (1960),
anisotropic fluids; TOUPIN (1964), hyperelastic materials; ERINGEN &
SUHUBI (1964) and ERINGEN (1964,1967), micropolar elasticity and flu-
ids; Twiss & ERINGEN (1971), single phase mixtures of micromorphic
and micropolar materials; and BOWEN (1982), porous media.

A continuum theory of granular material with voids was proposed by
GooDMAN & CowIN (1972) with the additional balance equations for
the equilibrated inertia and equilibrated force where they treated the vol-
umetric fraction of grains as an independent kinematical variable. The
evolution of the equilibrated inertia and force is assumed to be governed
by the extrinsic and intrinsic supplies in the form of equilibrated stress,
body forces, inertia force, and corresponding supplies or interaction fields.
Consequently, the energy equation for the granular media contains the
additional terms to reflect the effect of the additional kinematical vari-
ables and the extrinsic and intrinsic fields present in the theory. Using
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this theory and linearized constitutive equations which are restricted by
an entropy inequality, GOODMAN and COWIN were able to predict the
MOHR-COULOMB yield criterion for the flow of granules and the model
was shown to exhibit “dilatancy” (GOODMAN & CoOwIN,1971), or that
regions of high shearing are characterized by a low solid volume fraction,
whereas the low shearing regions are characterized by a high solid volume
fraction. The GOODMAN and COWIN’s theory was subsequently extended
by PASSMAN (1977) who generalized the theory by generalizing the equili-
brated force equation through the addition of equilibrated force and inertia
body force. The subsequent developments of this theory and the construc-
tion of constitutive equations which are restricted by the entropy inequality
for the mixture as a whole may be found in PASSMAN et al. (1984).

BEDFORD & DRUMHELLER (1980) developed a theory of multiphase
mixtures based on the “Hamilton’s extended variational principle,” mod-
eled the structural properties of mixtures through the virtual mass and
expansion-contraction effects, and utilized the entropy inequality for the
mixture as a whole to restrict the constitutive equations. The consti-
tutive assumptions in the works of PASSMAN and coworkers mentioned
above involve, among other variables, the volumetric fractions and actual
phase densities as independent constitutive variables, whereas BEDFORD
and DRUMHELLER involve instead the actual and partial phase densities.
This difference in the choice of independent variables does not appear to
be significant, but the “derivation” approach of the field equations is, since
the validity of the proposed variational principle on which the derivation
of field equations rests is in doubt due to the difficulty in clearly separating
the field equations from the constitutive equations.

In a series of papers AHMADI (1980,1982,1985) used a varied set of ad-
ditional balance equations to study the fluid-granular media and developed
constitutive equations using the entropy inequality for a mixture as a whole.
His additional balance equations include equations for the equilibrated in-
ertia, equilibrated force, and micro-inertia which are chosen from the works
of GOODMAN & CoWwIN (1972) and single phase polar media theories of
ERICKSEN (1960) and ERINGEN (1964) as noted above.

The balance equations for the equilibrated inertia and force of dis-
crete mass points and extended to continua with affine structure and
chemical reactions, have been rigorously treated by CAPRIZ & PoDIO-
GuipuGLI (1981). They showed that if the usual cross product of the
moment equation of mass points is generalized to a tensor product, then
the symmetric part yields an equation for the equilibrated force, whereas
the skew-symmetric part yields the usual angular momentum equation.
By exztending the concepts of kinematical and dynamical variables from
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the mass point mechanics to the continuous bodies and forming a gen-
eralized moment of internal forces and a hyperstress field (a third-order
tensor field), CAPRIZ and PODIO-GUIDUGLI derived a balance equation
for the equilibrated inertia and generalized the energy equation for the
additional work terms. Since their generalized angular momentum and en-
ergy equations for the continuum are based on the concepts of mass point
mechanics, it is not altogether clear that the resulting field equations are
unique, but their work does show that GOODMAN & CowIN’s (1972) equi-
librated inertia equation is very special in the sense that it includes trivial
material deformation processes.

1.2 Scope of the Monograph

From the above, it is clear that there is no agreement on the proper set of
conservation and balance equations of multiphase mixtures. The averaged
theories together with the constitutive equations which model the struc-
tural characteristics of mixtures have been extensively used to model many
technological processes, whereas the theories of multiphase mixtures of
the postulatory varieties which include the additional balance equations
have demonstrated their prediction capabilities of many physical phenom-
ena such as the MOHR-COULOMB yield criterion in granular media, the
REYLEIGH’s bubble equation (cit. VAN VIINGAARDEN, 1972), dilatancy
in granular media, wave dispersion, etc. Since both the averaged and pos-
tulatory theories of multiphase mixtures predict a wide variety of physical
phenomena it is difficult to dismiss either one of them, and one is led to
the search for an answer to the following questions:

1. How strong is the evidence for the existence of additional balance
equations in the theory of multiphase mixtures?

2. What is the number and proper form of these equations?

3. Is there a direct correspondence between the averaged and postulatory
theories of multiphase mixtures?

In this monograph the three questions posed above will be addressed.
Starting from the volume averaging approach and certain restrictions of
the motion of phases relative to the center of mass it will be shown that
it is possible to derive the additional balance equations advocated in the
postulatory approach. Moreover, these additional equations will be shown
to be of great generality and to reduce to the form advocated in the pos-
tulatory theories of mixtures only under very restricted assumptions of
the material deformation. After demonstrating the utility of the theory to
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reduce to special models, it will be shown how it may be used to model
the structural properties of mixtures not possible with the present models,
and how, by relaxing certain deformation assumptions, a hierarchy of more
complex theoretical structures may be developed.

1.3 General Scheme of Notation and List
of Symbols

In the book, the direct and tensorial notations are used with the symbols
defined below in the list of symbols and in the text when they first appear.
A more detailed review of the theorems of algebra, geometry, and calculus
is presented in the appendix.

The underlying space is the three-dimensional Euclidean space £3 with
the Cartesian coordinate system. In the direct notation, vectors and vector
fields are usually denoted by the Latin or Greek bold-faced miniscules: a, b,
&,..., whereas second order tensors are viewed as linear transformations in
&? and are usually denoted by Latin or Greek bold-faced majusculus: A, B,
T, ¥.... (except X and ¥ which are vectors of the reference position of the
material body point). The product of two linear transformations is a linear
transformation, AB = C, and the product of a linear transformation and
a vector is a vector, x = Tu, T7 is the transpose of T, T~ is the inverse of
T, detT is the determinant of T, and the contraction of T is its trace trT.
The divergence operator is denoted by V-, Va is the gradient of a, and
the gradient of a vector field b is Vb. I is the unit linear transformation.
The tensor product of two vectors a and b is denoted by @ X b, and it is
identified as the linear transformation.

The tensorial indices are denoted by the italic light-faced minisculus,
1,7,..., and the summation convention always applies to them. A comma
with a tensorial index following a tensorial variable a;, a;;, denotes the
gradient (or divergence or trace operation if :=j), and in the Cartesian
system it is a spatial partial derivative, whereas in a general coordinate
system it must be interpreted as the covariant derivative. The Greek light-
faced symbols a and B occur as subscripts or superscripts and denote the
phases of the multiphase mixture, a = 8 = 1,...,, where v denotes the
total number of phases present in the mixture. The summation of phases
is always denoted explicitly by the summation symbol ¥, =7 3 ,_;.
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Index of symbols

Equilibrated source inertia

Section of
Symbol | Description first
occurrence
a Coeflicient in the intrinsic stress (7.5)
moment and hyperstress
a Acceleration (3.1)
A Area, coefficients in the heat flux (2.2),(8.3)
vector and intrinsic stress moment
b Coefficient in the intrinsic stress (7.5)
moment and hyperstress
b Body force per unit mass (2.2)
b{®) | Frame-indifferent gyration tensor (4.3)
B Coefficient in hyperinertia (8.3)
B Variable defined in Table 2.1, left (2.2),(6.8
CAUCHY-GREEN tensor
c Coefficient in the intrinsic stress (7.5),(7.8)
moment and hyperstress, cohesion
é Mass source (2.4)
C Right CAUCHY-GREEN tensor (6.8)
d Coefficient in the intrinsic stress (7.5)
moment and hyperinertia
D Symmetric part of velocity gradient (4.3)
e,é | Coeflicients in the stress tensor (7.5),(7.6)
é Energy source (2.4)
é Energy variable (3.4)
E Coeflicient in the source inertia (7.5)
& Euclidean space (2.2)
f Energy variable (7.4)
f Specific surface traction moment (3.4)
F Deformation gradient (2.4)
K Isotropy group (6.9)
g Equilibrated moment source (3.4)
g Variable (3.4)
G Constitutive response functional (6.2)
h Variable (3.4)
H Coeflicient in surface traction moment (7.5)
H Unimodular tensor (6.7)
i Equilibrated inertia (3.2)
1

(3.2)
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Index of symbols

Section of
Symbol | Description first
occurrence
I Coeflicient in the Helmholtz potential (7.5)
I Unit tensor (4.1)
I Hyperinertia (3.2)
J Variable defined in Table 2.1 (2.2)
k Variable (5.2)
k,k,K | Variables (3.4)
K Coefficient in surface traction moment (7.5)
) Body force moment (3.2)
fe Internal energy density moment (3.3)
L Velocity gradient (2.4)
m Mass transfer rate (2.2)
1] Linear momentum source (3.4)
m, M | Angular momentum sources (2.4)
M | Coeflicient in the traction force (7.5)
M, | Concentration gradient tensor (8.5)
n Unit normal vector (2.2)
N Normal stress, coefficient (7.8),(8.3)
in the interaction force
o Coeflicient in the stress tensor (7.5)
P Hydrostatic pressure (6.12)
p Linear momentum source (2.4)
p Interphase pressure (7.4)
q Heat flux vector (2.2)
ds Interphase heat supply rate (3.3)
Q Orthogonal tensor (4.1)
T Heat generation rate per unit volume (2.2)
R Bubble radius (7.7)
R Rotation tensor (6.8)
s Specific entropy (2.2)
§ Entropy source (2.4)
S Set of ind. variables, shear stress (7.4),(7.8)
S Surface velocity (2.2)
S Surface traction moment (3.2)
t Time (2.2)

()
o

Reference time

(2.2)
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Index of symbols

Section of
Symbol | Description first
occurrence
t Traction force (2.4)
t Interaction force (3.3)
T Coeflicient in surface traction moment (7.5)
T Stress tensor (2.2)
T Variable (7.2)
u Diffusion velocity (2.4)
U Averaging volume (2.2)
U Frame-indifferent hyperinertia (4.3)
Ut | Right stretch tensor (6.8)
v Velocity (2.2)
Vv Reference volume (2.2)
v Left stretch tensor, vector of indep. (6.8),(7.6)
constitutive variables
W | Skew-symmetric part of velocity grad. (4.3)
x Spatial position vector (2.2)
X Reference position vector (2.2)
Z Coefficient in the source inertia, (7.5),(7.7)
bubble density
Greek
a Coeflicient in the stress tensor (8.5)
J¢; Configuration pressure, coefficient in (7.4),(8.5)
the stress tensor
¥ Coefficient in the traction force, (7.5),(8.5)
coefficient in the stress tensor
r Coeflicient in the heat flux vector (7.5)
§ Kronecker delta (3.1)
A Coeflicient in the traction force (7.5)
A Interfacial source defined in Table 2.1 (2.2)
v Gradient operator (2.2)
€ Specific internal energy, coefficient (2.2)
in the energy density moment
€;jr | Alternating tensor (2.4)
é Energy source (2.4)
é Phase change energy flux (3.3)
€ Measure of nonlinear effect (7.5)
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Index of symbols

Greek Section of
Symbol | Description first
occurrence
¢ Coefficient in the heat flux vector (7.5)
6 Temperature (2.2)
e Angle of internal friction (7.8)
¢ Coefficient in the stress tensor (7.5)
K Coeflicient in the heat flux vector (7.5)
K Reference configuration (2.4)
A Coeflicient in the stress tensor (7.5)
A Phase surface within averaging volume (2.2)
A Intrinsic stress moment (3.2)
b Reduced intrinsic hyperstress (7.4)
p,p° | Coefficients in the stress tensor (7.5),(8.3)
I Rotation vector (5.1)
v Coefficient in the heat flux vector (7.5)
v Gyration tensor (3.1)
v Rotation tensor (5.1)
¢ Coeflicient in the traction force (7.5)
¢ Position vector relative to the center (2.2)
of mass in the spatial configuration
= Tensor variable (3.1)
T Thermodynamic pressure (7.4)
i1 Coefficient in surface traction moment | (7.5),(8.3)
IT Tensor variable (3.1)
p Mass density (2.2)
b) Position vector relative to the center (2.2)
of mass in the spatial configuration
T Coefficient in phase change energy flux (7.5)
T Shear stress tensor (6.12)
T Set of constitutive variables (6.2)
é Volumetric fraction (5.1)
®,®° | Coefficients in the surface traction (7.5),(8.3)
moment
$ Variable defined in Table 2.1 (2.2)
X Coefficient in the source inertia (7.5)
X Configuration (2.4)
XK Deformation function (2.4)
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Index of symbols

Greek Section of
Symbol Description first
occurrence
P Helmholtz potential (6.12)
v Coeflicient in the source inertia (7.5)
¥ Variable defined in Table 2.1 (2.2)
w Coefficient in the energy variable (7.5)

Q Coefficient in the source inertia (7.5)
Subscripts | Description Occurrence
f Fluid phase (7.9)

m Mixture (2.4)

s Solid phase (7.9)

a,B,8,0 Phases of multiphase mixture (2.2)
Superscripts | Description Occurrence
a,B,8 Phases of multiphase mixture (2.2)

¥ Number of phases in the mixture (2.2)
" Internal constraint (6.12)

) Material derivative (2.4)
Special Sym. | Description Occurrence
<F> Volume-averaged variable (2.3)

F Density-weighted average variable (2.3)
F Partial average variable (2.3)
F Phase average variable (2.3)
F Framing (2.3)
> Summation (2.3)
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CHAPTER 2

FIELD EQUATIONS OF MULTIPHASE
MIXTURES

The construction of a proper theory of multiphase mixtures calls for a
strong foundation of the basic principles on which the theory should be
built. For this purpose, the utilization of an averaging procedure to con-
struct a set of conservation and balance equations for multiphase mixtures
is strongly desirable, provided, of course, that a suitable averaging proce-
dure exists. The suitability of an averaging procedure must be judged on
the basis of its capability to yield physical models of sufficient generality
such that the resulting field equations can model many known phenomena
and be able to predict new ones. Moreover, such an averaging procedure
should not produce inconsistencies when combined with the established
constitutive principles and it should be able to produce field equations of
multiphase mixtures which reduce to the single phase multicomponent mix-
ture theory when the interfacial structure of phases is disregarded. With
these requirements, a perfect averaging procedure may not exist, and a
theory built upon an incomplete truth must be open to criticism and crit-
ical evaluation. Being able to reproduce the simplest physical phenomena
first is a necessary attribute of any theory, and a theory which possesses
many necessary conditions for its existence is highly desirable. The pur-
pose of this chapter is to present a set of averaged conservation and balance
equations of multiphase mixtures obtained by using the volume averaging
procedure, after discussing other averaging approaches which appear to be
much less desirable than the one selected to construct a theory. The choice
of the volume averaging approach to motivate the construction of a the-
ory of structured multiphase mixtures is highly desirable, since this choice
yields a set of multiphase field equations which are able to account for the
structure of multiphase mixtures.

2.1 Choice of the Averaging Approach

In formulating theories of multiphase mixtures, two general approaches
have been followed: (1) the averaging approach where the local macro-
scopic conservation and balance equations of each phase are integrated
over suitable time and space segments to derive an averaged or macro-
macroscopic set of field equations for multiphase mixtures, and (2) the
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postulatory approach where the multiphase mixture equations are essen-
tially postulated or their derivation rests upon the specialized models of
material deformation. Because of very complex thermomechanical pro-
cesses that may occur in multiphase flows, the latter approach has not so
far produced a theory with strong physical foundation and the equations
may not even be consistent with averaging procedures. The consistency
of a theory of multiphase mixtures with a suitable averaging procedure is
highly desirable since the fundamental macroscopic conservation and bal-
ance equations within each phase are well-established. In either of these
two approaches, the details associated with the motion of interfaces are
explicitly ignored in the theory and the prohibitive problem of tracking all
phase interfaces of the mixture is reduced to a much more managable one
which only accounts for the gross material description. An averaging ap-
proach yielding a set of macro-macroscopic field equations has the tendency
to destroy the local structural information of the mixture, leading many
advocates of the postulatory approach to dismiss the averaging approach
altogether on the grounds that it cannot produce a theory of mixtures with
sufficient generality. It will be demonstrated in this monograph that the
local structural information of the mixture need not be neglected by the av-
eraging process and that it is possible to construct various approximations
of this information and produce many results of the postulatory theory of
mixtures as special cases.

An averaged set of multiphase field equations may be obtained by uti-
lizing temporal, spatial, or statistical averaging. DREW (1971) carried out
time averaging of the global or integral formulation, whereas IsH1I (1975)
performed time averaging of the local conservation and balance equations
of each phase. The spatial averaging may consist of segment, area and
volume averaging, and it has been performed to various degrees of com-
pleteness by DELHAYE & ACHARD (1977), TRAP (1976), NIGMATULIN
(1979), HASSANIZADEH & GRAY (1979), and DOBRAN (1981,1985). Time,
segment, and area averaging procedures produce singularities in the result-
ing set of field equations whenever an interface becomes stationary in the
flow field, or its unit normal vector is parallel to the surface normal when
this surface crosses an averaging area in the flow. The additional draw-
backs of the time averaging procedure are that the effect of multiphase
turbulence is not clearly separable and that it precludes a consistent uti-
lization of the principle of material frame-indifference on the averaged field
equations, which is an important and powerful tool used widely in contin-
uum mechanics to study the constitutive equations. The principle of the
material frame-indifference (see chapter 4) involves a time-dependent rigid
body rotation invariance, and the equations or physical variables which are
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invariant before time averaging are not necessarily invariant after the time
averaging. A special case of the principle of material frame-indifference
contains the Galilean group of transformations which, of course, s invari-
ant under time averaging, since this change of frame transformation does
not require the time dependent rigid body invariance. Moreover, a time-
averaged set of multiphase mixture equations may not be appropriate for
applications involving rapidly changing physical processes where the selec-
tion of an appropriate time averaging interval may be unknown.

The volume averaging procedure consists of averaging the local field
equations of each phase over an arbitrary volume in space that may be
fixed or moving. NIGMATULIN (1979) used the fixed volume averaging to
derive two-phase flow equations for bubbly liquids, neglected surface ten-
sion and surface thermal effects at the interfaces between the phases as well
as the discussion of the entropy equations for the mixture. HASSANIZADEH
& GRAY (1979) also ignored the interfacial sources in their volume averag-
ing approach containing a preselected set of admissible averaged variables.
DOBRAN (1985) used the fixed volume averaging to derive an averaged
set of balance of mass, linear momentum, angular momentum, and energy
equations, and an entropy inequality for each phase as well as for the mix-
ture as a whole. He also accounted for interfacial sources and rigorously
defined the kinematical concepts in the theory which are indispensible for
the proper study of constitutive equations (DOBRAN,1984b). It is also
possible for the volume-averaged equations to be discontinuous, even if the
local macroscopic variables are differentiable at each point in the flow field
whenever an intersection of the surface of averaging volume with the surface
of a phase interface has a nonempty intersection. However, this disconti-
nuity is removable through an alternate definition of the averaging volume.
The problems associated with the singularity of governing equations or dis-
continuity of averaged variables may be eliminated through the use of two
or more averagings (DREW,1971) or by multiplying the local macroscopic
field equations by a suitable weighting function before carrying out the av-
eraging, and then defining the averaged variables in terms of this function
(CELMINS,1984). As noted above, when use is made of the volume averag-
ing procedure it is not necessary to employ a weighting function to make
the approach legitimate and such will not be used in this book. In view of
this and other positive feature of accounting for the structure of the mixture
(see chapter 3 and subsequently), the volume averaging procedure appears
to be the most desirable to motivate the construction of a physical theory of
multiphase mixtures and it will be used in the book to construct a theory
of structured miztures. The development of the theory will be based on
the prior work by the author (DOBRAN,19822,1982b,1984a,1985a) where
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the full potential of the volume averaging approach was not exploited,
since the local structural information of the mixture which is apparently
destroyed through the averaging procedure was not reintroduced into the
global or averaged form of the field equations, except, possibly, through the
constitutive equations (DOBRAN,1984b), for some special circumstances of
multiphase flows. The extension of this work which involves the inclusion
of structural characteristics into the theory of multiphase mixtures based
on the volume averaging procedure was first presented in a seminar by the
author (DOBRAN,1985b), which in the considerably expanded form forms
a basis for this monograph.

2.2 Basic Kinematical Concepts and Local
Macroscopic Field Equations

A multiphase flow field in an Euclidean space &2 is illustrated in Figure
2.1. It consists of continua or phases a = 1, ...,7, where each phase consists
of a single (homogeneous) chemical constituent. (It is easy to extend the
theory to the situations where one or more phases consist of more than
one chemical constitutent.) With each phase a may be identified a subvol-
ume U(%) and observed its motion through space. As a result of the mass,
momentum, and energy transfer processes taking place within the mixture,
the volume U(*® changes with time, and at some initial or reference time
t, its volume may be identified as V(@%), The surface of the volume U9
will be denoted by A(*®) which has a unit normal vector n{®®) and velocity
S(49), A material point P of phase « is located within dU(®%) in the spatial
configuration and within V(9 in the reference configuration. The refer-
ence configuration may be thought as an undeformed and unstressed state
of the multiphase mixture such that a material point P of phase a may
be located by its position vector X(*¢). During the course of time from
the initial state ¢, to the present state ¢, the material undergoes mechani-
cal and thermal deformations as a result of mass, momentum, and energy
transfer processes taking place within the mixture, and the material point
P moves to a position x(®9). The position vector X (@9 may be specified by
the rectangular coordinates X(*®, X{*® and Xx{*9 or X%, K = 1,2,3,
whereas the vector x(®% can be specified by its rectangular coordinates
2{® 228 and z{*9 or m,(cas), k = 1,2,3. The position vectors X(® and
x(®) denote the center of mass positions of phase a in the reference and
spatial configurations, respectively, and the position vectors X(@%) and £(®%)
represent the positions of the point P relative to the center of mass (defined
mathematically in section 3.1) as shown in Figure 2.1, i.e.
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REFERENCE CONFIGURATION SPATIAL CONFIGURATION

Figure 2.1: Representation of multiphase mixture in reference and spatial configurations

X =X 4360, X2 = X 1387 K=1,2,3 (22.1)

x® = x® 4 g0 g0 =2 L g0 k=128 (222)
From (2.2.1) and (2.2.2) it follows that

2 = o)X, ) (2.2.3)
£09) = ¢ (X (@) 38 1) (2.2.4)

For each phase a and volume U{*®), use may be made of the local macro-
scopic conservation and balance equations of mass, momentum, energy, and
entropy for the non-polar media (see, for example, ERINGEN,1975) which
may be expressed in the following compact form:

Eai(p("%(a”) + Vo (pleO @)y (@) 4 weo.Jled)
—pED) P (@b) — (a8 p(ad) (2.2.5)
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Law | Mass Linear Angular Energy Entropy
Momentum | Momentum
g (af) 1 v (@9 r x v [ el0®) § 1y(ed) () [ slod)
J(ed) 0 —(ed) —r x T8 | gled) — T@b)Ty(ad) h(@f)
P (29) 0 bled) r x b{@d b(ed) .y (ad) Rled)
B(ad) 0 0 0 plad) ¢led)
AFT| 0 | ARY | <Al NG NG
A = (2Hvn + V )9, R = 729 /g(od) ¢ >0
Al®) = (2Hvn - S + V 8 + vV,-8)(@9), Al >0

Table 2.1: Coeflicients of the conservation and balance equations

where ¥4 J(6) (28 and B(®¥) are variables which depend on the
particular conservation or balance law and are given in Table 2.1. V°is the
gradient operator which operates in the space £3, p(®® is the mass density,
and v(®®) is the velocity of a material point of phase a contained in U(®9),
Assuming that the interface can be modeled as a surface of discontinuity
(in view of the discussion in chapter 1 this appears to be a very reasonable
assumption), it follows that across a phase interface use may be made of
the following jump or boundary conditions (ERINGEN,1975):

(m(eO@ ) 4 J(e6)n(@8)) 4 (mBn)gBn) 4 JBnnB)) = Al (2.2.6)
where
m(@®) = ped) (y(@6) _ §(A8)).p(ad) (2.2.7)

is the interphase mass transfer rate and A(®?) is the interfacial source term.
This source term can arise from the surface tension and is given in Table
2.1 where H is the mean interface curvature, V¢ is the surface gradient
operator and v is the surface tension coefficient. Notice in (2.2.6) and
(2.2.7) that a#g8, n(®® = —n#7) and S = S(E) for a subvolume § of
phase a in contact with a subvolume 7 of phase 3.

In Table 2.1, T is the stress tensor, b(®%) is the external body force
per unit mass, v(®® is the velocity, p{®® is the mass density, €{®) is the
internal energy per unit mass, q(® is the heat flux vector, s(®% is the
entropy per unit mass, h(®®) is the entropy flux vector, (%) is the absolute
temperature, () is the heat generation rate per unit volume, and ¢(®%) and
A, are the entropy production rates in the continuum and at the interface,
respectively. The condition ((®®) > 0, or that the entropy production in
each subvolume § of phase « is greater than or equal to zero, represents
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the local aziom of dissipation normally adopted in single phase continua
(TRUESDELL & NOLL,1965), and the reason for its use at this stage of the
analysis is discussed further below in section 2.4.6.

Equations (2.2.6) and (2.2.7) provide the necessary boundary conditions
across the interfaces for the solution of the field equations (2.2.5) when
supplied by the appropriate constitutive equations and equations of state.
As discussed above, such a solution is prohibitive in view of the large
number of interfaces present in most practical multiphase mixtures, and
the task of the volume averaging procedure is to average (2.2.5) over an
arbitrary volume of space in order to reduce the complexity of dealing with
the detailed motion of interfaces.

2.3 The Volume Averaging Procedure and
General Phasic Equation of Balance

The volume averaging procedure involves selecting an arbitrary fized vol-
ume in space U, in the spatial configuration of the mixture (shown in Figure
2.1) as illustrated in Figure 2.2. At time ¢ the union of subvolumes U®® of
phase « is the volume U, = 5 U(®® of phase a which is contained within
U. The surface of U®® which is fully contained within U is denoted by
al®) whereas the surface of intersection of U(®®) with U is denoted by a(9).
With this notation, the volume averaging of the general balance equation
(2.2.5) is performed for each phase over the portion of the volume U which
the phase occupies at time ¢, i.e. the following operation is carried out:

) /U ., (cquation(2.2.5))dU = 0 (2.3.1)

The volume averaging procedure has the mathematical property of map-
ping the entire contents of the flow field at time ¢ in the averaging volume
located in the spatial configuration into a point p(U) located at x, such that
the mapped configuration space £ (to which x belongs) is the subspace of
&3 as schematically illustrated in Figure 2.2.

The interchange of the integration and differentiation operators in (2.3.1)
is connected with the mapping of U in & which consists of continua
a = 1,..,7 into a point p(U) in &3, such that all these continua exist
at each point of this space. This mapping is onto and it may also be made
one-to-one, since to each point p(U) at the place x can correspond a unique
U at r, = x, where r, may be identified as the center of U. (The center r,
may be selected as the center of mass of the mixture in U as advocated by
DoBrAN(1985a), but this choice is not necessary at this stage of analysis.)
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REFERENCE CONFIGURATION
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SPATIAL CONFIGURATION

U (ad)
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MAPPED CONFIGURATION

Figure 2.2: Representation of a multiphase mixture in reference, spatial, and mapped

configurations
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Returning to the problem of interchanging time and space integration and
differentiation operators in (2.3.1), the following results from calculus may
be used (see also, for example, DOBRAN(1985a)):

Leibnitz’s Theorem

OF(ef) i}
_Y (ab) _ (ab) g (A8) 1, (ab)
26:/11(a6> ot dU = ot 26:/Uw> Fedy ;fa(m FS n (2dg 2)

Divergence Theorem

o {ab) — . / F(aﬂ) / F(aﬂ). (aE)d
26: U(ad)v F*)du =v 26: . dU+26: o n'® da

(2.3.3)

where F(®9) represents a differentiable tensor field in U(®) and on a(®f)
and a(A®). Notice in (2.3.3) that V° operates in &3, whereas V is an
operator associated with the space £3. The derivation of (2.3.2) is given in
any standard work on advanced calculus, whereas (2.3.3) follows by using
the GREEN-GAUSS’s divergence theorem and the fundamental theorem
of calculus. Since the mappings (2.3.2) and (2.3.3) are also linear, it is
possible to sum these equations over a and interchange the summation
with the operators 8/9t and V.

Using the fundamental relations (2.3.2) and (2.3.3) in (2.3.1), the fol-
lowing general equation of balance for the phase a is obtained:

5 .
EU" <pa¥a >4V Uy <pa¥aVa > +V Uy <Jo > —U, < po®, >

— S (ad) gy (@f) (ab) py (ad)
Ua < paBo >= z’s:/‘;w)(m gl  Je0in(*)) da (2.3.4)

where the volume-averaged quantities are defined as follows

1
F, >= — / Flas) 3.
<Fy> Ua; . dU (2.3.5)

Equation (2.3.4) may be reduced further by defining the density-weighted
average variables, F,, partial variables, F,, and phase average variables,

Fa, i- €.
af o

o —— — T

10,
—= o Fo 2.3.
<pu> ﬁaU<p > (2.3.6)
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- U
=22 < F, 3.
F, 7 < Fy > (2.3.7)
Fo=<F,> (2.3.8)
The partial density of phase a is defined by the equation
U,
_a = — o 2.3.
Pa= 15 <pa> (2.3.9)

whereas the mizture densityis obtained by summing up the partial densities
of phases, i.e.

p=> Pa (2.3.10)

The velocity of phase «, fra, and the mizture velocity, v, are defined by the
following relations:

10,
Vo = —— aVa 2.3.11
v U < paV ( )
PV = PaVa (2.3.12)

The above definition of phase velocity as the density weighted velocity can
be motivated by specializing (2.3.4) for the case of conservation of mass
from Table 2.1, i.e.

0 U <pa>+VUs < paVa>=—) m©®) da (2.3.13)
ot 5 Ja(a)

which upon using (2.3.11) and noting that U is a constant, it is reduced to
an equation that is similar to the form of the balance of mass equation of
single phase multicomponent mixtures. Hence

apa _ (ad)
B+ V pa¥e = —— Z / ™ da (2.3.14)

2.4 Basic Conservation and Balance Equations
of Multiphase Mixtures

The basic conservation and balance equations of multiphase mixtures con-
sist of the balance of mass, linear momentum, angular momentum and en-
ergy equations, and entropy inequality for each phase and for the mixture
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as a whole. The derivation of these equations from the general equation
of balance (2.3.4) also rests upon the fundamental kinematical concepts
that should be rigorously defined for the mapped configuration space £ at
which points all phases of the multiphase mixture exist as superimposed
continua.

2.4.1 Kinematics of the Superimposed Continua

Similar to the theory of mixtures (BOWEN,1976), a multiphase mixture
can be thought to consist of v diffusing bodies (phases) B,, a = 1,...,7,
where each B, belongs to a differentiable manifold that is isomorphic to
the three-dimensional Euclidean space £3. Each body B, consists of body
points (particles) Xo, and the configuration x, of B, is a homeomorphism
of B, into £3. Corresponding to the body points X, and the time ¢, a
motion is assigned to B,, and the position x in £ of the body points X,
at time ¢t may be represented by

X = X Xat) (2.4.1)

To each B, may be assigned a reference configuration k, at time ¢, < t of
the superimposed continua, where the place of particle X, in k, is given

by
Xo = Ka(Xa,to) (2.4.2)
Combining (2.4.1) and (2.4.2) yields

X = Xa(";l(xaatO),t) = XaK,(Xaat) (2'4'3)

where X, 1s the deformation function of B,. Notice that the meanings
of reference positions X, and X(*® (in Figure 2.1) are different and must
not be confused for the proper appreciation of the theory.

The expression (2.4.3) is assumed to be invertible for each phase a at
each time ¢, i.e. X, = x;k(X,t), for the reason that X, cannot occupy
two different positions in space and two particles X,; and X,; cannot
occupy the same spatial positions. The deformation function x,, is further
assumed to be twice differentiable so that it is able to represent the velocity
and acceleration in £3. The spatial coordinates will be expressed by the
lower case italic indices, x = z;e;, whereas the material coordinates will be
expressed by the upper case italic indices, X, = X, e;, where e;-e; = §;;
and ej-ex = §;x are the Kronecker deltas.

With the above definition of the kinematic concepts, the velocity and
acceleration of the body point X, or phase a at time ¢ and place x are
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defined as follows:
S BXaK,(Xa’t) ‘E-r — 62XaK,(Xaat)
N ot e iz
where the backward primes affixed to the symbols with a always indicate

the material derivative following the motion of the a’th phase. The defor-
mation gradient of phase a is a linear transformation defined by

(2.4.4)

Fo = GRADx 1 (Xayt), Fors = Oz (2.4.5)
aXa]
Fy' = Vackixt), Fij= o2 (2.4.6)
Oz
and the velocity gradient of phase a is given as
~ aﬁai
La = Vva(x, t), Laij = —é;; (2.47)

Combining (2.4.4)-(2.4.7) yields
La = ]‘?aF;l (248)

Of particular usefulness in the discussion of field equations are two math-
ematical identities which are discussed by TRUESDELL & ToOUPIN (1960)
and DOBRAN (1985a), among others. If I' is a differentiable function of x
and ¢, then the time derivatives following the motion of the a’th phase and
the mixture as a whole are given, respectively, as:

I = % +(VD)¥,, TI'= % +(VD)v (2.4.9)
from which it follows that
I'-T'=(VD)u, (2.4.10)
where
Uy =V,—V (2.4.11)

is the diffusion velocity of phase a.
If a mixture property I is defined by the equation

pl =" paT. (2.4.12)
then from the above equations it follows that
. S - 0P, .= 0 -
PF = Z[para - V'ﬁaraua + (—éet"" + V'pava)I‘a - (?l: + V‘PV)I‘a]

(2.4.13)
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2.4.2 Balance of Mass

The balance of mass equation of phase a is obtained from the general
equation of balance (2.3.4) and Table 2.1 with the aid of definitions (2.3.9),
(2.3.11), and (2.4.9);. Thus

)30 + pa Vv, = &, (2.4.14)
where
1 1
A __ = (b} — (ab)qlad) _ (ab)y. ., (a8)
o = Uz’s:/aw)m da_Uzs:/dA&)p (S vi*)).n'*) dg
(2.4.15)

is the mass supply or source of phase a. This mass source arises due to the
phase change or chemical reactions.

To obtain an equation for the conservation of mass for the mixture as
a whole, equation (2.4.14) is summed up over a and use made of (2.3.10),
(2.3.12), (2.4.9), and (2.2.6) with A®® =0 in Table 2.1. The result is

p+pVv=0 (2.4.16)
with the condition that the mass sources satisfy
Y éa=0 (2.4.17)
Substituting (2.4.14) and (2.4.16) into the identity (2.4.13) yields

pL = Y [al's — V-palatiy + &ul's] (2.4.18)

2.4.3 Balance of Linear Momentum

The linear momentum balance of phase a is obtained from (2.3.4) by using
the linear momentum coefficients from Table 2.1 and definitions (2.3.6)-
(2.3.8), i.e.

PaVa = V-To + paba + Pa (2.4.19)

where the lnear momentum supply or source is expressed by the following
equation:

1
N = —0¢. v, — — (aﬂ) (a&) — (aﬂ) (aﬂ) _ R
Pa CaVy U 26 ,/la(A&)(m v T n ) da \Y Cla

(2.4.20)
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Ciq in the above equation is the covariance coeflicient that is defined as

Cio = % < PaVa X Vo > —PaVae X Vo (2.4.21)
It expresses the effect of the finite interfacial area between the phases or
the structural characteristics of the mixture. It will be seen in the next
chapter how this quantity is determined when the structural characteristics
of the mixture are accounted in the theory.

The ezistence of the stress tensor T, is tied to the existence of T(29)
which is proved based on the Theorems of NOLL (1973). It may be sufficient
to state here that this proof can be established from writing the EULER’s
first law of motion for a material contained in a tetrahedron with surface
forces t acting on its surfaces. In the limit in the situation when the volume
of the tetrahedron is reduced to zero and use made of the CAUCHY’s lemma
that the forces acting on either side of the surface are equal in magnitude
and opposite in direction, t(x,n) = —t(x,—n), it is possible to associate
Ti; as the 1’th component of the stress vector t acting on the positive side
of the plane zj=constant, thus establishing that t = Tn or the existence
of T for a particular surface normal vector. An alternate argument for the
existence of T, is presented in section 2.4.7.

The balance of the linear momentum for the mixture as a whole is
obtained by summing up « in (2.4.19) and using (2.4.18) with T, = ¥,.
Hence

pv =V.T +pb+p (2.4.22)

where the stress tensor for the mixture T, the mixture body force b, and
the mixture momentum supply or source p, are defined as follows:

T = Z(Ta — Pally X Uq) (2.4.23)
pb =Y p.b, (2.4.24)
1
S = (28) dg — V. 4.
b U%/C.MA'" da~ V-3 Cua (2.4.25)

Summing up « in (2.4.20) and combining with (2.4.25) results in the con-
dition for the momentum source, i.e.

P =Y (éa¥a+ Pa) = I (lalla + Pa) (2.4.26)
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2.4.4 Balance of Angular Momentum

From (2.3.4) and Table 2.1, the balance of the angular momentum for phase
a can be expressed by the equation

PaE X ¥ = V(X X Ta) + X X (Faba + Pa) + 11a (2.4.27)

which upon using the linear momentum equation (2.4.19) is reduced to the
form

M, + €€k Tnk; = 0 (2.4.28)

where ¢;;; is the alternating symbol and rh, is the angular momentum
source that is defined by the following equation:

1
M, = —X X (Pg + EaVa) — 7 Z/(M) r x (m(®9y(@d) _ 7ld)n(e8)) 44
5

Palf —X) X Va — &a(f —X) X Vo + V(r —x) x T,
+ﬁa(r - x) X ba - V'ﬁa(r X va)(va - Q‘a) (24.29)

By defining a skew-symmetric tensor M,, with components hqg, i.e.
Moi; = €ijktivac (2.4.30)
where €;;; is the alternating tensor, equation (2.4.28) may be written as

M, =T,-T7 (2.4.31)

The angular momentum equation for the multiphase mixture as a whole
is obtained by summing up « in (2.4.27), i.e.

PEXXV=V(xxT)+xxpb+mm+xxp (2.4.32)

where

m=) m,=xXx V-ZCla—%Z/(M)(r—x)xAf,‘l’"s)da

—Zpa(r— ) X Vo — an(r— )X Vo + V- Z(_r—_x)_x_’l’—
‘|‘za:Pa(1' — %) X bo — V) palr X vo)(Va — V4) (2.4.33)

or upon using (2.4.31) and (2.4.23) it follows that

M=YM,=T-17 (2.4.34)
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The skew-symmetric tensor M, expresses the nonsymmetry of the stress
tensor of phase a. From (2.4.29) and (2.4.31), this nonsymmetry can be
associated with the structural characteristics of the multiphase mixture
that also affects the mixture stress tensor as may be seen from (2.4.33).
The angular momentum sources may be affected by the internal particle
spins, couple stresses, and body moments.

2.4.5 Balance of Energy

The internal energy equation of phase a is obtained from Table 2.1, general
balance equation (2.3.4), and by the use of balance of mass and linear
momentum equations (2.4.14) and (2.4.19). After some algebra, the result
is

Pate = tr(TIVV,) — V8o + Pafa + éa (2.4.35)
where the energy source is defined by
éct = _f)a"-ra - éa(éa + E{ra".’a) + V'(CSa - c2a) + Cqq

1 1
- Z / - [m(as)(ﬁ(as) + 5v(ous).v(ms)) + (q(as) _ (e8)T(ad) )‘n(aﬂ)] da
8§ a

1 e
+§ﬁa(‘~ra"7a - va'va) + iéa(‘.’a"-’a - va'va)

(2.4.36)

and the covariance coefficients ¢3,, €3, and ¢y, are given by

[0 4

1 1
< pal€a + 2Va'Va)Va > —Pal€a + EVa-—va)\'ra (2.4.37)

=T 5
Cia = % <Tlv, > -Tl%, (2.4.38)
Cia = % < PaVabe > —PaVa-ba (2.4.39)

These coeflicients express the structural characteristics of the mixture and
do not appear in a theory of mixtures where the interfacial area is neglected.

An equation for the energy balance for the mixture as a whole is obtained
by summing up « in (2.4.35). The result is

pé = tr(TTVv) = V.q+ pr + (¢ — v-p) (2.4.40)
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where the mixture properties €, q, » and é are defined by the following
equations:

1
pe =Y (Pata + 3 PollUqy) (2.4.41)
. 1
q=> (G — TIus + pabatia + 5,a(,,(u(,,-u(,,)uo,) (2.4.42)
pr = ¥ (Pofa + Pabatia) (2.4.43)

1 ———
€ = 2[040 + V'(CSa - Cga) + §ﬁa(va-va -V, '_Va)
+lé (VaVa — Vava)| —iZ/ Ald) dg
2 Q [0 4 a a a U as a(Ad) €
1
= v:p+ ) (e + tarPa + Ga(a + 5 a)] (2.4.44)

The second equality in (2.4.44) follows from (2.4.26) and (2.4.36).

The inclusion of structural characteristics of the mixture into the theory
in the next chapter will require the redefinition of the mixture characteris-
tics expressed by (2.4.41)-(2.4.44). Without accounting for such a structure
these properties are formally similar to the ones defined in the single phase
multicomponent mixture theory where it is assumed that é = 0 and p = o.

2.4.6 Entropy Inequality

The role of entropy in continuum mechanics is a controversial issue. Clas-
sical thermodynamics requires only that the entropy of the system and its
environment be nondecreasing, which leaves open the question whether or
not it is legitimate to state that ((®%) >0. Because of this, the statement
that ({6 >0 as stated in Table 2.1 is referred to as the local aziom of dissi-
pation and it is advocated by some that ¢ can only be properly determined
by the constitutive theory. While it is possible to allow for such a gener-
alization in a completely postulated theory of mixtures, it should be clear
that in a theory of mixtures which is consistent with volume averaging of
local macroscopic field equations where the local axiom of dissipation has
proven to provide very general and useful results, it should be legitimate
to state that each sub-body & of phase a produces ((®%) >0 as stated in
Table 2.1. The adequacy of employing the local axiom of dissipation in a
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theory of mixtures can only be properly assessed by comparing the results
of the theory with experiment, and it may indeed be necessary in the future
revisions of the theory to employ a more general condition on ({2,

In the formulation of an entropy inequality there is also some question
whether the entropy flux h is equal to the heat flux q divided by the
absolute temperature §. Although the kinetic theory of gases is a distinct
theory from the one considered here, we may nevertheless employ it to
provide us with a possible resolution of this problem. In the kinetic theory,
the entropy flux is not equal in general to the heat flux divided by absolute
temperature (MULLER,1968,1983). Moreover, this theory motivates the
single phase theory of continua and therefore may be used to establish
the result that h # q/6. There does not appear to be a kinetic theory-
independent proof, however, that in a local macroscopic continuum this
condition is satisfied, and it is common to assume that h=q/§. This being
the case, and since an averaging procedure is used to construct a theory of
multiphase mixtures starting from equations of single phase continua, it is
also appropriate to assume herein the condition that h=(q/#). With this
in view, the entropy inequa]jty for phase « is obtained from (2.3.4) as

fada+ V- ( oy — p;"" + Eafa + 80 >0 (2.4.45)

where
1 (ab) .y (f)
N _ 2z (af)glag) L 4 T~
80 = V(€50 + Ca) — Cra + U zs:/‘.’('”)(m s+ g(ad) )da
(2.4.46)

is the entropy source of phase o, whereas the covariance coeflicients cs,,
Ceo and c7, are defined as follows:

Csy = % < PaSaVa > —PadaVa (2.4.47)
Ua Ya Qa
—_ 2o e o 2.4.48
U, PaTa PaTa
y = 2 O 2.4.49
Ccy U < o > . ( )

The entropy inequality for the mixture as a whole is obtained from
(2.4.45) by summing over o and using (2.4.18) with ', = 5., i.e.

ps+ V- Z 5 + PaSally) — Z Pa 24+5>0 (2.4.50)

[0 4
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where

5 =Y Pada (2.4.51)

n .. 1 N
§ = za: Sq = za:[v'(c&x + Coa) — C1a] + T ﬁ:s/‘;(“) AlD dg  (2.4.52)

A(*® is the entropy production rate at the interface and it is positive
semidefinite (Table 2.1) within the assumption of the validity of the local
axiom of dissipation as discussed above. The entropy source § does not
necessarily assume a positive definite value, since it also includes the di-
vergence of covariance coefficients (the effects of structure of the mixture)
that may have negative values.

2.4.7 Proof of the Existence of Phasic Stress Tensor

The ezistence of T, independent of the volume averaging approach can
be established by accepting the EULER’s first law of motion of phase «a
(DOBRAN,1985b) where it is assumed that the body By, of phase a in £3
is a homogeneous continuum body, i.e.

d 0 Vv - o A A d
= /v,,, PaVadV = /A tadd+ fv (Pab + P+ &)V (24:53)

where V,, is the volume containing the mass of phase a and A4,,, is its surface
at time £. As noted earlier in section (2.4.3) the existence of stress tensor
can be proved rigorously by employing the Theorems of NOLL (1973). Less
formally, however, equation (2.4.53) is now applied to the stress tetrahe-
dron shown in Figure 2.3 where t, and n are the stress vector and unit
normal vector, respectively, acting on the slanted face with area A. The
stress t; is acting on the face A;, t; is acting on A4,, and t3 is acting on A3.
Applying the Transport Theorem! to the term on the left, using the mean
value theorem, and taking the limit as the height h of the tetrahedron is
reduced to zero, yields

1 The Transport Theorem for phase a is

d - paV . 2 .
e PaVa dV = PaZa dV + 5avava'n dA = (ﬁaVa + éava) dv
dt Vn v ot 4 v

where use is made of the balance of mass equation (2.4.14) and Green-Gauss Divergence Theorem

/FndA:/v-FdV
A v
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X2
Figure 2.3: The stress tetrahedron
limp_.o(PaVa — Paba — f)a)% = A(t + nyt; + naty + nzt;) =0
(2.4.54)
or
to = —n1ty — noty — nsts (2.4.55)
But, by the CAUCHY’s lemma
t(x,n) = —t(x,—n) (2.4.56)
so that
—ty = The;, —ty="Tpe;,, —t3=Tgae; (2.4.57)

where T}; is defined to be the 7’th component of the stress vector acting on
the positive side of the plane z;=constant, it follows that

t = Ti;en; = Tn (2.4.58)

which establishes the ezistence of T,. If this result is now substituted
into (2.4.53), and the transport and GREEN-GAUSsS divergence theorems
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employed for the term on the left and area integral for the term on the
right side of the equation, respectively, gives

/V (Pa¥e — VTo — faba — Pa)dV =0 (2.4.59)

where the multiphase variables are assumed to be differentiable in V,, and
on A,,. Requiring that the integrand in this equation vanishes for all
arbitrary volumes V,, produces the balance of linear momentum (2.4.19).

2.5 Properties of the Averaged Equations

The phasic equations for the balance of mass (2.4.14), balance of linear
momentum (2.4.19), balance of angular momentum (2.4.31), and balance
of energy (2.4.35), are similar to the balance equations of constituents
in the single phase multicomponent mixture theory (BOWEN,1976) and
would reduce to these equations in the absence of the interfacial struc-
ture of the mixture. This reduction would not, however, be valid for the
case of the entropy inequality (2.4.45), since an entropy inequality for each
constituent of a single phase multicomponent mixture would yield results
that are inconsistent with the classical thermochemistry in the sense that
an equilibrium chemical potential would depend only on the properties of
that constituent. This result is, of course, too special and it would de-
scribe only ideal mixtures (BOWEN,1976). For this reason, in the theory of
single phase multicomponent mixtures use is made only of the global or en-
tropy inequality for the mixture as a whole, since then the theory does not
produce any inconsistency with the classical results and it is moreover con-
sistent with the results of the kinetic theory of gases (TRUESDELL,1984).
The derivation of the multiphase mixture field equations using the aver-
aging approach leads naturally to an entropy inequality for each phase, as
long as it is assumed that the local axiom of dissipation or entropy in-
equality within each sub-body § of phase a is assumed valid, as common
in modeling the single phase continua (see also the discussion earlier in
section 2.4.6). All models of multiphase mixtures obtained from averaging
the local macroscopic field equations with the assumed validity of the local
axiom of dissipation generally require a second law of thermodynamics for
each phase, whereas the postulated theories of mixtures discussed in chap-
ter 1 do not. These latter models only assume an entropy inequality for the
mixture as a whole (DRUMHELLER & BEDFORD (1980), PASSMAN et al.
(1984)), similarly as in the single phase multicomponent mixture theory.
In the postulated theories of multiphase mixtures, the source terms of
the mixture p, M, &€ and § are assumed to be equal to zero. The moti-
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vation for this assumption comes from a principle of TRUESDELL (1984,
page 221): “The motion of the mixture is governed by the same equations
as is a single body.” The premise of this postulate is that mechanical and
energetic processes taking place within a mixture come from reactions and
transfers between the constituents of the mixture, rather than from the true
processes of “creation or destruction.” The mizture source terms (2.4.25),
(2.4.34), (2.4.44) and (2.4.52) arise precisely from reactions and transfers
between the phases, and in order for the above principle to apply in the
theory of mixtures the interfacial effects arising in these sources would
have to be ignored or incorporated within the definition of other mixture
variables. For example, the right side of the momentum source equation
(2.4.25) could be incorporated within the definition of T in (2.4.23) pro-
ducing p=0. This procedure does not, however, appear to be completely
successful in reformulating other balance equations to the form which is
required by the principle, even if all mixture source terms are set equal to
zero, due to the complications arising in the entropy inequality (2.4.50).
In the latter case with § = 0, we may define an entropy flux H and an
entropy supply o, i.e.

szx%+ﬁﬁmg (2.5.1)
pr=Y ”g_s" (2.5.2)

thereby transforming (2.4.50) into the form
ps+V-H—po >0 (2.5.3)

But as discussed earlier, in single phase continuum theories of matter it
is common to assume that H = q/§, which in theories of mixtures is not
true unless diffusion and temperature differences between the phases are
neglected. To circumvent this difficulty PASSMAN et al. (1984) suggest
the use of two different temperatures: one for conduction and the other for
radiation defined as follows:

oﬂ = Z(% + Padalla) (2.5.4)
pr PaTa
r_ype 2.5.
NS =

so that (2.4.50) could be written as

ps + v-(aﬂ) - % >0 (2.5.6)
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This procedure is, however, highly speculative as no such temperatures
have been observed by experiments in multiphase flows and the heat gen-
eration rate » may exist due to the sources other than by radiation. The
theory of multiphase mixtures obtained from an averaging approach pro-
vides a clearer definition of the mixture source terms as arising from the
interphase interactions. Their justification for the presence in the mixture
field equations comes from averaging, which is simply a method whereby
the local properties of the mixture at a point in space and time is replaced
by an average over the neighborhood of this point. In this sense, the source
terms represent the nonlocal or structural characteristics of the mizture and
need not vanish, as it is assumed to be the case in a local or structureless
theory.

2.6 Concluding Remarks

In this chapter, the concepts and methods of the volume averaging ap-
proach were presented and used to derive a basic set of multiphase field
equations. This basic set of equations consists of the balance of mass, mo-
mentum and energy, and entropy inequality for each phase in the mixture.
The averaged equations contain the structural properties of the mixture
and can be adjoined with the additional balance equations that can model
these characteristics as discussed in the following chapter. An alternative
approach in establishing the phasic and mixture balance laws is to postulate
the ¢ntegral balance laws as in DOBRAN (1985b), and require the differen-
tiability of all multiphase fields within an arbitrary material volume and
on its surface. The application of the transport theorems then establishes
the phasic and mixture balance laws discussed in this chapter. Moreover,
if a region of discontinuity is assumed to exist within the material volume,
then the integral balance laws produce differential balance equations in the
regions removed from the discontinuity and jump or boundary conditions
or balance laws across the surface of discontinuity. The jump conditions
can be utilized to study the acceleration and shock waves in multiphase
flows DOBRAN (1983).



CHAPTER 3

THE MATERIAL DEFORMATION
POSTULATE AND FIELD EQUATIONS
OF MULTIPHASE MIXTURES WITH
STRUCTURE

In the development of the basic conservation and balance equations of
multiphase mixtures by the use of volume averaging procedure in chapter
2, no method was proposed within the theory to account for the structural
characteristics of mixtures. The averaging approach has also left us with
two problems. The first problem pertains to the proper selection of the
position x in £ onto which the continua in the averaging volume U are
mapped, whereas the second problem pertains to the selection of a proper
averaging volume U in the averaged field equations. Although DOBRAN
(1984b,1985a) alluded to the possibility of choosing x as the center of
mass of the mixture in U and accounting for the size of U in the averaged
field equations through a nonlocal theory of constitutive equations, no such
program was carried out. In this chapter, a method will be presented
whereby the structural characteristics of the mixture can be incorporated
explicitly in the theory to various degrees of approximation. The starting
point of the analysis is a basic material deformation postulate which is used
to derive additional transport equations for multiphase mixtures. This will
be followed by showing how the structural characteristics of mixtures can
be modeled in a more explicit manner.

3.1 The Basic Material Deformation Postulate

The basic material deformation postulate pertains to an assumption of the
deformation of material particles of each phase when they undergo a motion
from the reference to the spatial configuration as illustrated in Figure 2.1.
The basic material deformation postulate. The motion of ma-
terial particles of each phase « relative to the center of mass undergo a
homogeneous deformation expressed by the following equations:

¢ = M =Y (3.1.1)

sie” = =l ¢ (3.1.2)
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This asumption of the material deformation relative to the center of mass
of each phase is a special case of the more general material motion which
can be constructed from (2.2.4). With the assumption that this equation
is differentiable with respect to X(*% it can be expanded in series about
(2% =, yielding

o H¢led) .
gl(c 6)(X(a),2(at§),t) — gk(X(a),z(aﬂ) :0, t) 4 ( gk 2&{6)
zledog

axed
( 6" )
ad ab
BE% )BEEE ) zlefo 5(20—g

Referring to Figure 2.1 and the motion of a material particle P from the
reference to the spatial configuration, it is clear that physically we expect
distinct material particles in the reference configuration at time £, to be
located at different places in the spatial configuration at time ¢, and vice
versa if these particles were to retrace the motion to their original reference
states. This physical requirement of inpenetrability of matter implies that
the mapping between two configurations must be assumed mathematically
to be bijective and we may, therefore, set in (3.1.3)

ezl ... (3.1.3)

¢ (x(@) ned_p ) =0 (3.1.4)
Moreover, by defining
H¢lad)
me) — ( fk(ms) (3.1.5)
BEK 2(1?6)20

it may be seen that (3.1.3) is reduced to (3.1.1) if second and higher order
terms in the series expansion are neglected. The basic material deformation
postulate (3.1.1) or (3.1.2) accounts, therefore, only for the first order
deformation of the material relative to the center of mass, and although
it is possible to relax this assumption by including higher order terms in
the series expansion, a theory based on higher order approximations would
loose its simplicity and possibly also its practical usefulness.

The basic material deformation postulate implies that the motion of
material of phase a is comprised of:

1. An arbitrary deformation of the center of mass.
2. A rotation of the mass points about the center of mass.

3. An affine deformation of material particles relative to the center of
mass carrying ellipsoids into ellipsoids.
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As will be seen below, this material deformation assumption allows for the
inclusion of considerable structure into the theory of multiphase mixtures.
An assumption similar to (3.1.1) is also central in the development of the
micromorphic theory of ERINGEN (1964) and Twiss & ERINGEN (1971),
who developed structural theories for single phase/single component and
single phase/multicomponent mixtures. The adoption of the deformation
principle (3.1.1) in the theory of multiphase miztures is, however, reflected
in the definitions of mixtures’ structural properties which are differentfrom
the ones in the micromorphic theory.
Equations (3.1.1) and (3.1.2) imply that

M7 =57 = bk (3.1.6)
=@ Il = gy, (3.1.7)

where §;¢ and 8k are the Kronecker’s deltas defined in chapter 1.
The velocity of the material point P (Figure 2.1) and of the center of
mass of phase a are defined by the usual relations,

(o) {a)
v(@) _ (‘_91‘_*) vl = (?i_) (3.1.8)
ot X(ad) ot X(a)

whereas the material derivative of £(9 is the time derivative following the
motion of particle P with X(*) remaining constant. Thus,

\ (16 a (as)
£ = ( g ) (3.1.9)
t ) X(a) X(a)
and upon using (3.1.1) and (3.1.2) it may be written as
o0~ Hig B0 - MG S 9 (o0

where u,(c‘;) is, in general, a function of time and position in the spatial

configuration. In a special situation when u,(c‘;) is a skew-symmetric tensor,
(3.1.10) represents a rotation of material particles relative to the center of
mass (as will be discussed below in more detail), and for this reason v
in single phase structured theories has acquired the name of the gyration
tensor. Using (3.1.8); and (3.1.10) it follows from (2.2.2) that the local
macroscopic velocity of a particle of phase a, v(®®), and of the center of
mass of the same phase, v(®), are related by

o) = o) 4 (a8 glod) (3.1.11)
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Multiplying (3.1.11) by p{®% and integrating over the volume of phase a
contained in the averaging volume shown in Figure 2.2 gives:

(06) (@) JIT = (@) / (ab)
z,s:/mao)p i i 26: v P U

+Vl£(lx) z,s: /I.J(ao) p(as)gt(aﬂ aUu (3.1.12)

where use was made of the fact that v{* and 1% can be taken out of the
integral. But from the definition of the center of mass of phase a,

(aﬂ) (aﬂ) =
26 /U(ao)p §77dU =0 (3.1.13)
and noting that
(ad) =P
26 /U(ao)p dU = pU (3.1.14)

which follows from (2.3.5) and (2.3.7), (3.1.12) is reduced to the following
form:

- [ a ad
,ao,'u,(c U = 26:/1.1("6) P 's)'v,(c YdU (3.1.15)

Utilizing (2.3.5) and (2.3.6) in the above equation gives
vie) = ¢, (3.1.16)

or that the density-weighted velocity of phase a is equal to the center of
mass velocity of the same phase. Similarly, the mixture velocity v, defined
by (2.3.12), is equal to the center of mass velocity of the mixture, 7.e.

pv = az; /U oy POV U = za: pav'® (3.1.17)

This result follows from (3.1.15) when it is summed up over a and use
made of (3.1.16). From (3.1.10) and (3.1.11), the accelerations of a material
particle of phase a and of the center of mass are related by

ot = al + (07 + vl (3.1.18)

m Vm

Again, multiplying (3.1.18) by p(*®) and integrating over U, produces the
results

al®) = v, (3.1.19)
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pa=pv = Zﬁa\\?a (3.1.20)

where the last equation is obtained by summing up « in (3.1.19). Asin
the case of velocities, the density-weighted accelerations of each phase and
of the mixture are equal to the corresponding accelerations of the center
of mass. These results are clearly the consequence of the basic material
deformation postulate and do not follow directly from the volume averaging
procedure discussed in the last chapter. The association of the position x
in the mapped configuration space in Figure 2.2 with the center of mass of
the mixture in the averaging volume U is now clear.

The introduction of the above material deformation postulate is useful
for resolving a problem stated at the beginning of the chapter on a choice of
the mapping position vector x in £2. More importantly, this postulate plays
a much more significant role, for it reveals a rich theoretical structure on
which foundations may be built a theory of structured multiphase mixtures.
In the next section, it will be shown how (3.1.1) and (3.1.2) allow for the
derivation of additional transport equations, and in later sections how the
basic balance equations discussed in chapter 2 may be recast into forms
which reveal in more detail the structural characteristics of the mixture.

Before closing this section, however, it is useful for later developments
to summarize two results which follow from (3.1.1), (3.1.2), (3.1.6), (3.1.7)
and (3.1.10). These results are

v = e =) (3.1.21)

) = vy (3.1.22)

3.2 Additional Transport Equations in the Theory
of Multiphase Mixtures

The inclusion of structural characteristics into the theory of multiphase
mixtures may be performed through the additional transport or balance
equations which model these characteristics. In this section, equations for
equilibrated inertia and equilibrated moments will be derived using the
volume averaging procedure and the basic material deformation postulate
from the previous section.

3.2.1 Balance Equation for the Equilibrated Inertia

The balance equation for the equilibrated inertia is derived by taking a
moment about the center of mass of the conservation of mass equation
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(2.2.5) and performing volume averaging of the resulting expression, i.e.
(o8) p(e8)( O (a8) O (a8), (a6)y g7
) [ 6 + ek =0 (321)

After some algebraic manipulations using (2.2.7), (2.3.2), (2.3.3), (2.4.15),
(3.1.10), (3.1.11) and (3.1.14) it may be shown that (3.2.1) can be reduced
to an equation for the equilibrated inertia of phase a, i.e.

pa(zakl - Vlgm);aml - V[m zakm) - _ca(zakl - Zakl) - (pa amkl) m (3 2. 2)

where 7,4, is the equzhbmted inertia of phase a defined by
o = 537 5 o PR a0 (323)

and 74 and I, are the equilibrated source inertia and hyperinertia ten-
sor, respectively, which are defined by the following expressions:

P 1 o [0 7 [0 1 01 [0 1
Calakt = T7 Z/(M) p( 6)£,(c 6)51( 6)(S(M) — vl 6))-n( %) da (3.2.4)
6 a

- T — a)_ (ab) (ab) aﬂ) (af)
paIamkl anU Z/I.J( 6) £ £ £ daU (32.5)

The equilibrated source inertia 44y, arises from the phase change within
the mixture, whereas the hyperinertia tensor I,,,x, represents a third order

moment effect. Using (3.1. 11) (3.2.3) and definition (2.3.5), (3.2.5) may
be expressed as

A

U. - . =
p_aIamkl = F < pavamgakgal > —PaVamlakt (3-26)

The hyperinertia tensor I, represents, therefore, a covariance effect that
vanishes if the local velocity in each phase is equal to the center of mass
velocity.

3.2.2 Balance Equation for the Equilibrated Moments

The local momentum equation (2.2.5) may be used to form a balance equa-
tion for the equilibrated moment. This is obtained by taking a moment
of (2.2.5) and integrating the resulting expression over the volume U,, i.e.
the following procedure is carried out:

ab a o ab a ad (16) a
LA+ 0 g

_Tk(zf) _ p(aﬂ)bgcaﬂ)] dU =0 (3.2.7)
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After rearranging and using (2.3.2), (2.3.3), (3.1.10), (3.1.11) and (3.2.2)-
(3.2.5) it may be shown that the above equation can be reduced to

z_(ja) [pa';.;ak - ﬁak - Takm m pabak] + pazajn[ul(cn) + Vl(c(rxn) r(:rZ]

- al) ~ xS a 1 a (15 a o1
+Pal/,(nq)vak,mzajq = _anm mq)U Z/( 6)P 6)51' )fn 6)£q ? dU

(e Z/( . as) aE) dU)pm + = Z gaﬂ) as) (as) da

a(Aé)
7 ?fw,paﬂe,-“%:” v (329

A close examination of this equation reveals that the right side contains
various moments of the intrinsic and eztrinsic forces of phase a, whereas
the left side contains the inertial or convective effects of the material par-
ticles with respect to the center of mass. These extrinsic and intrinsic
stresses and moments will be defined as follows:

Stress average, T,:

ak] e Z/( 5 k;ﬁ) (329)

Body force moment, £,:

p 11
- __E: (ab) ¢(eb) p (ab)
bk =27 ; /U(an” &b dU (8.2.10)

Intrinsic stress moment, \,:
atS) (6)
Saiim = 5 3 [ £e01(e0 4y (3:2.11)
s
Surface traction moment, S,:

Sujt = Z G(M)g“% *)ne®) da (3.2.12)
Substituting definitions (3.2.9)-(3.2.12) into (3.2.8) and requiring that the

terms multiplied by zg-") vanish (cit. 2.4.19) results in a balance equation
Jor equilibrated moments of phase a:

pazalﬂ(ukn + Vkm mn) - S Jk + pa‘gajk + Ac!_]lcm m

A

—pau,g,l?mIamJ,, — pau( Vak mzan (3.2.13)
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The stress average defined by (3.2.9) is not a new definition as it occurs in
the basic balance equations (2.4.19) and (2.4.35). The body force moment
£, results from the nonuniformity of the external body force fields and body
force moments acting on phase a, whereas the intrinsic stress moment X,
arises from internal stresses acting on material particles of phase a. The
intrinsic stress moment is a third order tensor and it may be called a
hyperstress. The surface traction moment S, comes from the forces acting
on the surface of U,.

The above balance equations for the equilibrated inertia and moments
reveal the structural characteristics of the mixture. They show that the re-
placement of the local force balance equation in each phase by an averaged
equation has the effect of replacing the continuous distribution of forces by
resultant forces and couples. This result is, of course, also consistent with
the particle mechanics where the forces acting on a collection of particles
may be replaced by a resultant force and a resultant couple. The extrinsic
forces, which may be of the gravitational or electromagnetic origin, arise
from the external effects and they act on the entire set of particles. Their
local distribution in U, is equivalent to a resultant force f)a, and aresultant
couple £,. A similar situation arises for the forces acting on the surface
of U,. When averaged over the surface of U,, they may be replaced by
a surface traction force T,on,, and a couple S,. In a continuum of each
phase, the interparticle forces cancel out by the NEWTON’s third law of
action and reaction and there is no net resultant force. The internal forces
produce, however, the stress and couple stress when a particle of small
volume is isolated from the rest of the body and the effect of the body on
the surface of the particle is considered in terms of resultant forces and
couples. The result of this, in the averaged field equations, is the existence
of the stress field T, and of a hyperstress field X,. The reason for possible
nonsymmetry of the stress tensor T, is also contained in (3.2.13) and it
will reveal itself more succinctly when we consider a special case of this
equation in chapter 5.

3.3 Momentum and Energy Sources

The momentum and energy sources are defined by (2.4.20) and (2.4.36),
and in this section their form will be examined in more detail with the
aid of the basic deformation postulate. Using these sources, the energy
balance equation (2.4.35) will then be transformed into an alternate form
so that the structural characteristics of the mixture can reveal themselves
more explicitly. The results in this section form a preliminary analysis for
the next section where the basic field equations of chapter 2 and additional
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balance equations of the previous section are manipulated into alternate
forms for further analysis in later chapters.

The covariance coefficient C,, appears in the momentum source p,
in (2.4.20) and it is defined by (2.4.21). Using (2.4.20), (3.1.1), (3.1.11),
(3.1.13) and (3.2.3), it is reduced to the following form:

Clm] - pa ,(:1) ;n);amn (331)

from where it can be noticed that the velocity correlation is expressed
directly in terms of the inertia and gyration tensors. Equations (3.3.1),
(3.1.11) and the definition of the interaction force

- 1
i = G 2 g T 0 (332)
s a

reduce (2.4.20) to

Bai = i — ot (3.3.3)

This equation shows that the momentum source arises from reaction forces
acting on the surface of U, and nonuniform material motion about the
center of mass as it is subjected to mechanical and thermal loadings. Note
that the interaction force t,, is different from the definition of the traction
force t = Tn in section 2.4.7.

The covariance coefficients ¢2q, €3, and c4, in the energy source (2.4.36)
and defined by (2.4.37)-(2.4.39) may also be reduced with the aid of (2.3.7),
(3.1.11), (3.1.13), (3.2.3), (3.2.5), (3.2.10) and (3.2.11), i.e.

" — 1 o) (x
Caj = pa ( ‘eEam + Pavml/,(m)”](q zamq + 2pa z(m) 1(n)IaJmn (3'3'4)
égaj V,(m):\amij (335)
= pot (3.3.6)

where the internal energy densz'ty moment Le,, is defined by
- a6) (ab) ¢ (ab)
Team 5_: . £ du (3.3.7)

Defining further the phase change energy fluz é4éa, and the interphase heat
supply rate G,,, by equations

. 5_: / 1y PEVED(SAD) — y(2)).0(=) g (3.3.8)
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- 1 a (04
G = }; / 1y AP0 da (3.3.9)

the energy source (2.4.36) can be written as:
: (@)

€ = _ﬁaiﬁai - éa(ga - éa) + (pa”}f;);amq),jﬁaiuim - q_sa + 5ait_ai
MGE

+Sam] ;?n)+ﬂa£ami () 2pa( im Vig amq)

+(V('a)xamji - 1(m)pa£€am PavaJV_gm);amqV,(:)
a [0 4 1 A (03 (03 3 4
2pa _gm) ](ﬂ)I zmn),i + ECQVI(m Viq )(Zamq - Zamq) (3.3.10)

or upon using (3.3.3) it becomes:

a)"

éct = _éa(ga - éa) - qsa + SamJ ;?n) + Palasz,(:l) 2pa(”,m iq amq)
(@) ()7

_vaJ, (Pa Jm Vi zame) + 2Ca z(m zq (Zamq iame)

)5 1. () (a
(VD A i — V. pazeam—ipa LTSI SR (3.3.11)

The momentum source (3.3.3) and energy source (3.3.11) can be used
in the momentum equation (2.4.19) and energy equation (2.4.35) to form
the total energy balance equation of phase a. This is accomplished by
first forming a scalar product of the momentum equation (2.4.19) with the
velocity v, and adding the result to (2.4.35). After some algebra, the result
is:

1 == 1 a) (a -
Evaivaz + 2”,("1) ,(q )zamq) = (Tazjvaz)_g Qai,i

+pagaiﬁai + para ca(Ea - Ea) + vaz (pa ( );amq),J
_qsa + vai oi T Sam] _g:xn) + pazamzu(a)

PolEa +

+(V a)Aamji - ,(m)palfam pavaju_gm);amquz(:)
1 a) (o 1 a) (a :
_ipa"g(m) J(n)Ia,m,,) + 2ca ,(m) ,(q)(zamq tamq) (3.3.12)

This equation illustrates that the total energy of phase a consists of the
thermal energy, the kinetic energy of the center of mass, and the kinetic
energy relative to the center of mass. The rate of change of this energy is
balanced by: (1) the power produced by stress, body force, heat transfer
and heat generation within the mixture; (2) the energy transfer due to
the phase change; (3) the heat transport and rate of work done by forces
on the boundary of U,; and (4) the power associated with the spatial
nonuniformity of the material motion relative to the center of mass.
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3.4 Alternate Forms of Balance Equations

The equilibrated inertia equation (3.2.2), equilibrated moments equation
(3.2.13), and the energy balance equation (3.3.12) can be transformed into
alternate forms depending on the different definitions of source terms or
the combination of one or more equations. In this section these equations
will be manipulated into the expressions that will be useful for analysis
in the next section and for comparison with special models of structured
multiphase mixtures in chapter 5. The reinterpretation of source terms
in various balance equations also affects the definition of variables for the
mixture as a whole, and it will be discussed in the later part of the section.

3.4.1 Phasic Balance Equations

The momentum balance equation (2.4.19) can be transformed into an al-
ternate form by redefining the momentum source, i.e.

My = Po + EaVa (3.4.1)
so that (2.4.19) can be written as
paVa = V-To + fabo + g — GaVa (3.4.2)

In the equilibrated inertia equatlon (3.2.2) the equilibrated source iner-

tia Zakt, and the hyperinertia tensor Iamkl, may be grouped into one term
defined by the equation

’;ajn = éc:!';.ctjn - (ﬁajamjn),m (3.4.3)
such that (3.2.2) reduces to the following form:
ﬁa(:l:ajn — uj(m);amn — V(a)~ajm) = —cazaj,, + kaJ,, (3.4.4)

Alternatively, we may define

kajni = —Padaijn (3.4.5)
Kajﬂ = paV.;:xn);amn + p_au,(::,z;a]m (3-4.6)
kajn = éa:;ajn (34.7)

so that (3.2.2) can also be written as

ﬁaiajn = _éa;ajn + Kajn + kajni,i + kajn (3-4~8)
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Multiplying (3.4.4) by u,(c‘;) and adding the result to the equilibrated mo-
ments equation (3.2.13) yields:

AY

ﬁa(;ajnul(c(:u) (a)zaﬂmukm) - 0‘.1’c + palalk + A0‘-7’"" m
_pauf(nq)vak,mzajq - cazajnV](cn) + gajlc (349)

where the equilibrated moment source g, i is defined by

doik = Catajnt\™) — (Bat\ famjn) m (3.4.10)

Defining a new set of variables in (3.2.13) by

’_"ajlcm = xozjlcm pavakzajq r(nq) (3411)
pafajlc a]lc (3.4.12)
ga]k = pa ;n)zanmul(cm) + gajk + 5ak(pa;ajqur(:‘q)),m (3-413)

equation (3.4.9) is reduced to an alternate form of the equilibrated moments
equation. Hence

pa;ajnl/](cz) = Eajkm,m + pa(fajk + ‘Zajk) - éa;ajnl/](;:,) + gajk (3-4-14)

The energy balance equation (3.3.12) may also be transformed into al-
ternate forms. Towards this end two new energy source terms, é, and é,,

will be defined, i.e.

€a = Caﬁa + (pa ]q )Zamq) JvmV( ) - qsa + 5ai{ai

1 a)_ (a 1 ~
_(pa ,m)lfam + 2pa ;m) J(n)I zmn),i + §ca zm 1q )(zamq - zamq) (3 4. 15)

. .1

1 (a
€a = ca(—ﬁaiﬂm + 21/,(,71) U ) + v; DG i

1 a a) (a
+2pazamq(uzm zq) zm) z(q )) + 8 (34'16)

and (3.3.10) and (3.3.12) may be written, respectively, as

~

€a = _paii;az Caba + Sam_g 'im + palasz

(@) _

2pa(l/1(:;) z:)~am9)

+(V]sl x(1"1-]1 pava]l/.](m);amquzq ) + ea (3-4-17)
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1~ 173 -
pa(Ea + 2’Ua,'Ua, + 2”,("1) ,(q )Zamq) - (Tazjvaz) g Qoig
+pazai5ai + pa';:a - caEa + Sam] ;:In) + palamz ( )
+(V(a)/\amJ, paku](m)zamquiq )),,' + €4 (3.4.18)

Using (3.4.1), (3.4.11)-(3.4.16) and the balance of kinetic energy equation
obtained by taking a scalar product of the momentum equation (3.4.2)
with the velocity v,, the above equation is reduced to

ﬁa\éa = _aiji;ai,_] Qaz i + para + Vz(m)qhamiq - Tha,"lja,‘ - V,'(:;)gami
- 1 1 5
_paui(:; fami - éc!(é:c! - 5501'5(11' - 2 "(:l)zamn Vin )
1 o). (a
L g + (3.4.19)

3.4.2 Mixture Balance Equations

The conservation and balance equations for the multiphase mixture as a
whole are obtained by summing up the phasic field equations. This task
was performed in chapter 2 for the basic set of field equations involving
the balance of mass, linear momentum, angular momentum, energy, and
entropy inequality. The introduction of the structural characteristics of
the mixture into the theory through the additional balance equations ex-
pressing the balance of equilibrated inertia and moments necesitates not
only the derivation of these balance equations for the mixture as a whole,
but also the redefinition of the mixture properties in the basic field equa-
tions. Although some of these mixture variables will not change (notably,
the mixture stress tensor (2.4.23), mixture body force (2.4.24), and mix-
ture entropy (2.4.51)), presented below is, however, a complete list of these
variables for a ready reference.

In the theory of structured multiphase mixtures discussed above, the
mizture variables will be defined as follows:

p=3pa (2.3.10)
pUi = ¥ Pobai (2.3.12)

Tij = Z(Taij - pauaiuai) (24.23)
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[0 4

pbi =3 foba (2.4.24)
p’i,'j = Zﬁa;m‘j (3420)
PlijVmn = Zpaimﬂl( @) (3.4.21)

1 1
pe= Z[paea + 5Pataitai T 5 Patamn(Vim — Vin)(Vin — in)] (3.4.22)

- = . 1_
q = Z[Qai - Taﬁu’aj + Pa€alioi + §pauajuajuai

+(ij - V}:))’—lakﬁ - pa(”jk - 2 ch ) Zakqu’ai] (3.4.23)

pr = Z[ﬁa'f'a + ﬁazaiuai + ﬁazm'j(l/}?) - l/j,')

—%pazam,.(u,m ) — o) (3424)
ps = 5(_1: Pada (2.4.51)

kini = za:[kajni — Podajntai] (3.4.25)
Kin =Y Kajn (3.4.26)

pli; = %jpaia,-,- (3.4.27)

pfis = Za:ﬁafm-j (3.4.28)

hjik = Z[’—lajik - pa”i(:);ajnuak] (3-4-29)

[0 4
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This definition of mixture variables allows for the conservation and bal-
ance equations for the mixture as a whole to be expressed in terms of these
variables. The conservation of mass and balance of linear momentum, an-
gular momentum, energy, equilibrated inertia, and equilibrated moments,
together with the entropy inequality for the mixture, can thus be written
as:

p+pvi;=0 (2.4.16)
pvi = Tij; + pb; + pi (2.4.22)
M;; =Ty — T (2.4.34)

Pf = Tjivj,i —qi;+pr+ —P[VimVin’;mn + imn(”iml./in - ilim”in)]

+hlc2jilec,i — pVjkfr; + € (3.4.30)

ps + Z(% + Padalai)i — 3 4 ‘.i’:"‘ +5>0 (2.4.50)
Piin = kinii + Kjn + kjn (3.4.31)

Pinvim = hitmum + Plik + pfik + G (3.4.32)

where the source terms satisfy the following conditions:

Yéa=0 (2.4.17)

Pi =) Thai (2.4.26)
M =Y M,; (2.4.34)
é = Z éa — ’Ujﬁj —_ lecglcj (3433)

§= 3, (2.4.52)
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Ein =" kajn (3.4.34)
ik = Y Jarjh (3.4.35)

The reasons for the existence of source terms in the theory of multiphase
mixtures was discussed in section 2.5.

The conservation and balance equations of structured multiphase mix-
tures presented above reduce to the basic set of equations discussed in
chapter 2 in the absence of the structural characteristics of the mixture.
Thus, setting the phase inertias and gyration tensors equal to zero reduces
(3.4.22) to (2.4.41), (3.4.23) to (2.4.42), (3.4.24) to (2.4.43) and éin (3.4.33)
to (€ — v-p) appearing in (2.4.40).

3.5 Concluding Remarks

The basic task of the chapter, to derive a set of field equations for multi-
phase mixtures with structure, is complete. By invoking a basic postulate
of the material deformation with respect to the center of mass has al-
lowed not only the derivation of additional balance equations expressing
the evolution of inertia, particles rotation and particle dilatation of each
phase, but also the embodiment of these characteristics into the basic field
equations expressing the balance of mass, momentum, energy, and entropy
inequality. The affine deformation postulate permits modeling of the center
of mass motions with the basic equations, whereas the additional balance
equations expressing the equihbrated inertia and equilibrated moments allow
for the modeling of material deformation relative to the center of mass. In
this sense, these latter equations may be viewed as constitutive, since they
are a consequence of an assumption of the material deformation. While
a consideration was given only to the first order material deformation rel-
ative to the center of mass of each phase, it should be clear that it may
be possible to construct higher order theories involving second and higher
order approximations in (3.1.3). Since the additional balance equations
contain the intrinsic and extrinsic source terms that must be specified by
(probably much more restrictive) constitutive equations, it is approprite to
view these equations as the balance equations, as they have been referred
to in this chapter.

In the following chapter, the development of the theory will involve an
examination of the kinematic, dynamic, and energetic field variables for
the invariance properties under the change of the observer’s frame of refer-
ence. The reason for this is to properly study the constitutive equations in
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subsequent chapters and to compare the results of the theory with existing
special models of multiphase mixtures.



CHAPTER 4

RESTRICTIONS IMPOSED ON FIELD
EQUATIONS BY THE PRINCIPLE OF
MATERIAL FRAME-INDIFFERENCE

After a brief review of the concepts of frame, change of frame, and frame-
indifference, the principle of material frame-indifference for multiphase
mixtures will be stated and used to study the restrictions imposed on the
kinematic, dynamic and energetic variables appearing in the multiphase
field equations developed in the previous chapters. The analysis in this
chapter forms a basis for the subsequent chapters involved with the devel-
opment of constitutive equations and more detailed discussion of special
models of structured multiphase mixtures.

4.1 Events, Frames, Change of Frame,
and Frame-Indifference

The distance and time intervals are fundamental quantities which are mea-
sured in kinematics. They can only be determined with respect to an ob-
server or frame of reference. A frame of reference of an observer is, thus,
fundamental to the observation of a physical phenomenon and may be the
fixed stars, walls of a laboratory, or a set of objects whose mutual dis-
tances remain unchanging during the period of observation. When this set
of objects is chosen as three mutually perpendicular unit vectors, then a
coordinate system is specified, which is obviously different from a frame of
reference. The time of occurrence of some event may be specified only with
respect to the time of occurrence of some other event, with such a refer-
ence being a part of the specification of a frame of reference. The frame
of reference may be viewed, therefore, as a space of events formed by the
places and instants which themselves are the elements of Euclidean spaces.
This homeomorphic mapping of events into places and instants may be
called a framing F (TRUESDELL,1977), where the instants are assumed to
be oriented and a tensor is an element in the space of places. A change
of frame in classical mechanics has the meaning that two observers who
have chosen the same units of length and time, set their clocks differently
and are in arbitrary rigid motion with respect to one another are equally
qualified to represent physical phenomena. If the same event is observed
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in frames F and F*, with corresponding places x and x*, then a change of
frame from F to JF* of an observer is represented by

t"=t+a (4.1.1)

x* = x3(t) + Qt)(x — %o) (4.12)

where a is a reference time. A place X and time ¢ assigned by an event in
F is assigned a place xj and time t* by the same event in F*, and Q(%) is
a rotation of a vector (x — Xo) in F into a vector (x* — x3}) in F* with the
properties of preserving the inner product and sense of orientation. The
inner product is preserved if Q is an orthogonal tensor, i.e.

QW) =1, QijQr = QiiQsk = ik (4.1.3)

where I is the unit tensor, whereas the sense of orientation is preserved by
setting

detQ = +1 (4.1.4)

Both x}(t) and Q(t) are also assumed to be smooth functions of t. Thus,
the condition (4.1.3) is necessary and sufficient for Q to preserve the inner
product and distances in vector spaces. !

Although a physical phenomenon is assumed to be independent of a
frame of reference, its description in one frame is generally different from
a description of it in another frame. The physical variables which are
functions defined only on the event world in each frame and do not depend
for their description on the frame itself are said to be frame-indifferent. A
frame-indifferent scalar-valued function f(x,t) has the same value in any
frame of reference and it is required to transform under the change of frame
according to

flx,t7) = f(x,1) (4.1.5)

A vector field y, a second order tensor M, and a third order tensor A to
be frame-indifferent are required to transform under the change of frame
(4.1.2) as follows:

y*(x*,t°) = Qt)y(x,t), ¥ = Qujy; (4.1.6)
M*(X*at*) = Q(t)M(X,t)Q(t)T, M:g = QikMle.il (4'1'7)

1This is proved by using (4.1.2) and (4.1.3}, i.e.
(X* = X5)(Y* — ¥3) = Qij(z5 — 20;)Qik(ux — vox) = (X — XKo)(¥ ~ ¥o)
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AT(x",t7) = Q)A(X,1)Q() QR)", Al = QuQimQknAtmn (4.1.8)

The result (4.1.6) follows from (4.1.2) directly. To prove (4.1.7) we can
take in (4.1.2) u=x — Xo and u*=x* — x;= Qu and consider the tensor
transformation v=Mu. But

v = Qv =QMu = QMQ'u* = QMQ u* = M*u*

and, therefore, M* = QMQ as stated. Similarly, we may also consider
the tensor transformation V=Av, where V and v are second order and
first order frame-indifferent tensors, respectively. Then

V' =QVQ" = QAvQ" = QAQ'v'Q" = QAQ"v QT = A*v"

from where it follows that A*=QAQ%Q7, as claimed.

4.2 The Principle of Material Frame-Indifference
for Multiphase Mixtures

As discussed in chapter 2, it is possible to consider the motion of a particle
of phase o, X(®9, from the reference configuration to the spatial configu-
ration as shown in Figure 2.1, as well as the motion of a particle of phase
a, X, from the reference configuration of the superimposed continua to
the mapped configuration of the superimposed continua. In both situa-
tions one can define respective particle deformation functions such that
the change of frame from F to F* of an observer induces also a change in
the motion of the material particle of phase a, namely:

x:{(,aﬂ)(x(aé),t*) _ Q(t)x(‘,’f) +e(t) (4.2.1)

Xar(Xast™) = Q(t)Xar +c(t) (42.2)
(ab

where x;¢ ) is the deformation function associated with the motion of parti-

cle X(®®) from the reference configuration X(@¥ to the spatial configuration
x(aﬂ) ,

x(®8) = ylod)(x (ab) t) (4.2.3)

whereas X, denotes the deformation function associated with the motion
of particle X, of the superimposed continua from the reference configura-
tion X, to the spatial configuration x, i.e.

X = Xak(Xa,t) (4.2.4)
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The latter deformation function, it may be recalled, was considered in
section 2.4.1. Q(t) in (4.2.1) and (4.2.2) is an orthogonal tensor satisfying
(4.1.3) and (4.1.4), t* is related to ¢ by the shift in time expressed by (4.1.1),
and c(t) is a time-dependent translation vector.

Most of the physical variables that appear in the conservation and bal-
ance equations of multiphase mixtures are not, however, frame-indifferent,
as may be readily shown for the velocities and accelerations. Differentiating
(4.2.1) yields

5= Q)X + Q(t)v, + &(t) (4.2.5)

v, = Q(t)x + Q(t)Va + 2Q()V4 + &(¢) (4.2.6)

which clearly illustrates that the velocity and acceleration are not frame-
indifferent, since they do not transform according to (4.1.6). If, however,
dQ/dt =0, t* =t and c=wt, with w a constant vector, then (4.2.5) and
(4.2.6) give v, = QV, + w and v. = Qv,. This change of frame trans-
formation, where the acceleration is frame-indifferent, is called the group
of Galilean transformations which relate to observers moving at uniform
velocities with respect to one another and with no change of relative ori-
entation in time (TRUESDELL,1977).

Mass, force, torgue, temperature, internal energy, and entropy are all
assumed to be frame-indifferent. They are intrinsic or primitive material
properties that all observers decide a priori to agree upon for any given
material.

The requirement of certain thermo-mechanical variables to be material
frame-indifferent or form invariant under arbitrary time-dependent rota-
tions and translations of the frame of reference has created some contro-
versy. This controversy has basically resulted from the stress and heat flux
computations in the kinetic theory (CHAPMAN & COWLING,1970) using
various order iteration procedures for an ideal gas (the CHAPMAN-ENSKOG
or MAXWELLIAN iterations). Starting with the third order or BURNET ap-
proximation, MULLER (1972) and EDELEN & MCLENNAN (1973) demon-
strated that the stress and heat flux explicitly depend on the spin tensor or
the skew-symmetric part of the velocity gradient which, as will be discussed
in the next section, is not frame-indifferent. WANG (1975) and TRUESDELL
(1976) argued against using iterative procedures or kinetic theory to prove
or disprove the principle of material frame-indifference, since the iteration
schemes provide only approximate results, whereas the kinetic theory in
general does not provide the constitutive equations determined on the ba-
sis of independent variables. More recently, however, a consensus appears
to have been reached that although the kinetic theory does not provide
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frame-indifferent constitutive equations for stress and heat flux according
to the principle of material frame-indifference, it does provide and excellent
approximation to these values for gases which are not highly rarefied, or
more precisely, for gases with the ratios of mean free molecular paths to
the characteristic time scales of the problem of much less than one (HICKL
& MULLER,1983; SPEZIALE,1986). From the latest studies this much is
clear: the use of the principle of material frame-indifference can be physi-
cally justified in many practical applications and should be fully exploited
in analyses. The principle of the material frame-indifference is a very pow-
erful mathematical tool for studying the constitutive equations and will be
used in this book without further questioning its validity.

4.3 Transformation Properties of Multiphase
Variables

The density, internal energy, heat generation rate, entropy, and temper-
ature are all scalar functions and are required to be invariant under the
change of the observer’s frame of reference. Thus,

B = Pay € =, Th=Fay 5 =3, 0., =0, (4.3.1)

The material derivative of a frame-indifferent scalar function is frame-
indifferent. For example, the frame invariance of the material derivative of
density p, is proved as follows. By definition we have

l‘—)’;(x*,t*) — (apa(x ’t ) + 5;1_ (a—;(x*’t*))
x* t*

ot* Oz
= (Ea(jt_)) s (__.___aﬁ"(x’t))
ot J.. J oz; ),
(), o () s (5g), o
But from (4.2.2) and (4.2.4)
zi = Qijzj + ¢ (4.3.3)
which upon multiplying both sides by Qx and using (4.1.3) yields
z; = Qjiz} — Qjic; (4.34)
and upon differentiating gives
Oz; Oz;

oz = Qki, Bt = jSz} - jScj ~ Qji¢j (4.3.5)
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Equations (4.3.4) and (4.3.5) reduce therefore (4.3.2) to the form:
P (X7, 1) = (%Ef)x + (6” ") (Qsiz} — Qjic; — Qjié; + 95;Q ;1) (4.3.6)
From (4.3.3), z}=Qjrz+ + c;, time differentiating (4.1.3), i.e.
QiiQik = —Q5iQik (4.3.7)

Q;iQji =0 (4.3.8)

and using (4.2.5), 5;j=ijzk + @ jkUak + ¢j, reduces (4.3.6) to the claimed
form .

. 0pa . Opa
plx ) = 2 4 i = (%, 1) (4.3.9)

Thus, we also have

S0 =50, 0, =04 (4.3.10)

b
= €

R
QR .
R

The divergence of the velocity field is a frame-indifferent scalar. This is
readily proved as follows

iy 2 050G g )= 0,05 1 0, s
Vv, = 0z = azf(QuzJ + Qijlaij + &) = Qua - QJ 5z
a [ avaz
= 0,;Qi + Qiig2 ? ’Q o = Vi, (4.3.11)

where use was made of (4.3.8) and (4.1.3). Equations (4.3.1), (4.3.9), and
(4.3.11) yield from (2.4.14) the frame-indifference of mass supplies, i.e.

& =G, (4.3.12)

[+ 4

The velocity gradient is not frame-indifferent, since it transforms ac-
cording to

azj - szvam ﬂQ]ﬂ + szQJm (4.313)

The velocity gradient can be uniquely decomposed into a symmetric part
D,;;, and a skew-symmetric part Wy;;. This is defined by

1,. -
Daij = E(vai,j + vaj,i) (43-14)

1. .
Waij = E(vai,j ~ Vajyi) (4.3.15)
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such that
Vai,j = Daij + Waij (4.3.16)
Thus, D,,; is frame-indifferent, whereas W,;; is not, since

D;ij = QimDaanjn (4317)

W;ij = QimWaanjn + QimQjm \ (4.3.18)
In the frame F*, equations (2.2.2) and (3.1.1) yield
2;®0 = (@) 1 g0 = i) | rlelyled) (4.3.19)

Using (4.2.1) and the change of frame transformation of the center of mass
of phase a

Z‘Z(a) = ijz_;a) + Ck (4320)
gives the results
600 = Qyel™ (4.3.21)
;) = Q1) 4.3.22
kK QkJ 1K ( rUe )

which shows that £(29) is frame-indifferent, whereas I1(*) is not. Taking
the material derivative of (4.3.22) in the frame F* in the center of mass of
phase « and using (4.3.20) gives

) = QuTE + QuyTilyY (4.3.23)

where II;‘}? denotes the material derivative of Hg‘,’{) in the frame F. Starting
from (3.1.6) with HZ%’)EZ(;’)::&[, using (4.3.22), multiplying the result by
Qk,-Eg‘;z-, and using (3.1.7) produces the result

=3 = QuER (4.3.24)

Moreover, upon using (4.3.23) and (4.3.24) in (3.1.21), v} = @=e)
(3.1.6), (3.1.7), and (3.1.22), the change of frame transformation property

for the gyration tensor is obtained, i.e.

V:l(a) = Qijuj(:l)le + Qilem (4.3.25)
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Setting 7 = £ in (4.3.13) and subtracting the resulting expression from
(4.3.25) gives the following frame-indifferent tensor

b:‘l(a) — V*l( a) _ ml = U( '5aj,m)le ngb(a)le (4.3.26)

The gradient of the gyration tensor is frame-indifferent. This easily follows
from (4.3.25). Thus,

:‘l((l)cl - Qz]lean Jmn (4327)

The equilibrated inertia ink, defined by (3.2.3), is frame-indifferent,
since it transforms according to (4.1.7), i.e.

K +(ab) p+(a8) p*(ab)
lokt = 7 =T Z/(ad) &6, dU
== UZ [ PO QunEIQuE e AU = QumiemnQun  (4:3.28)

The equilibrated source inertia tensor, defined by (3.2.4), is also frame-
indifferent, whereas the hyperinertia tensor, defined by (3.2.5), is not, since:

akl kazaanln (4.3.29)

pa amkl QmanlecPa aabc
+Qmanlec_U_ Z /U 8) p("")&gaa)fﬁ"")ff,"a) dU (4.3.30)
)

As discussed above, the forces are taken to be frame-indifferent. This
requirement should then hold locally in the spatial configuration space
in Figure 2.1 and be preserved in the mapped configuration space when
produced by a suitable averaging procedure. The latter requirement is
satisfied exactly by volume averaging, as may be easily proved by noting
that Q depends only on time and is unaffected by a spatial integration at
constant t. Thus, the body force and stress tensor of phase a transform as
frame-indifferent variables, i.e.

Bri = Qijha; (4.3.31)

Tz = QimTomnQjn (4.3.32)

In view of the result (4.3.21) and assumed frame-indifference of scalar vari-
ables, forces, and mass as discussed above, it readily follows from (3.2.11),
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(3.2.12), (3.3.2), (3.3.7), (3.3.8), and (3.3.9) that the following variables
are frame-indifferent

X;kjm = Qkanmecxaabca S’;jk = Qjagaakab

{:!1 = Qiat—aag ZE;m = QmaZEaa, é:; = éa, q_:a = q__ga (4.3-33)

Note that £, is excluded from being frame-indifferent. The reason for this is
that £, may include body moments that can be responsible for the particle
rotations. A magnetic particle placed in a magnetic field, for example, will
rotate due to the field, and £, needs to be suitably generalized to allow for
this phenomenon in the presence of the electromagnetic field.

The momentum source p, is expressed by (3.3.3) and is not, in general,
frame-indifferent, unless the structural characteristics of the mixture (as
considered above) are very special, or are ignored (¥®)=0,1,=0). To de-
termine the change of frame transformation property of the energy supply
defined by (2.4.35) we may proceed as follows.

Using (4.3.16) it follows that

tr(TIVV,) = Taijfbaij = ToijDaij + TaijWais
= ToijDaij — %Majiwaij = tr(T1D,) — -;—tr(MaWa) (4.3.34)
But, since T, and D, are frame-indifferent, i.e.
tr(T:TD?) = tr(T1D,) (4.3.35)

these equations can be used to derive the following result:
. . 1 . .
tr(TTV*¥2) = tr(TIVv,) - Etr(MaQTQ) (4.3.36)

The heat flux vector is assumed to be frame-indifferent, transforming under
the change of frame as

4, =Q@n, V@, =V-q, (4.3.37)

Using this result, equations (4.3.36) and (4.3.10),, and frame-indifference of
scalar variables (4.3.1), it follows from the energy balance equation (2.4.35)
and entropy inequality (2.4.45) that

RS . o
e;=ea+§tr(MaQTQ), 8 = 5, (4.3.38)

The energy supply é, is, therefore, not frame-indifferent, unless the an-
gular momentum supply M, is equal to zero. Note that in the Galilean
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frame of reference dQ/dt =0 and &, is then frame-indifferent. Moreover, by
redefining the energy supply according to the relation (DOBRAN,1985)

1 N
ba = bap + 5tr(Mo Wa) (4.3.39)

yields a frame-indifferent variable é,g, with the second term on the right
of the equation representing the rate of work due to the couple M,,.

The material derivative of the inertia tensor is not frame-indifferent and
may be shown from (4.3.28) to transform according to

N %

Z kazdmﬂQlﬂ + (kaQlﬂ + kaQlﬂ)zamn (4-3-40)
Furthermore, from (4.3.25) and (4.3.28) it follows that
Vlcf::)-am[ = ijV;':xn);aanln + Q.kaln;amn (4-3-41)
V;r(na) :zlcm - QlJ in zaankm + Qlﬂkazamn (4.342)
which when subtracted from (4.3.40) yields a frame-indifferent tensor
:‘:alcl - Vl:r(::)-aml - V;r(na) :!km - ka(;amﬂ - m(za);a"l nga);amz)Qlﬂ

(4.3.43)

The above result can now be used in (3.2.2) to conclude that (faJamke)m
should be a frame-indifferent tensor

(p; A;mkl),m = ka(pajaabc),ath (4.3.44)

since, as proved above, o, Ca, takt, and 1,4 are frame-indifferent. A third
order tensor defined by

Utes = 35 5 [0 P60 (43.45)
can be shown to be frame-indifferent by using (4.3.21), i.e.
aijk = QiaQpQkUnabe (4.3.46)
The hyperinertia tensor (3.2.5) can be expressed as
Bodamke = V) Unitn (4.3.47)

which upon differentiation gives the result

(pajamkl),m — Vr(nrz mUakln + V,g,(:rzUakln,m (4-3-48)
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By (4.3.44) this last result is required to be frame-indifferent, and since
v@ and Ui, are frame-indifferent (cit. (4.3.27) and (4.3.46)), it is

sufficient and necessary that

VOO Upsktnm =0, or frame—indif ferent (4.3.49)

This condition is, of course, satisfied if the gyration tensor represents,
physically, a pure dilatational effect of the material motion relative to the
center of mass, describing a very special constitutive assumption whose
full implication in the theory of structured multiphase mixtures will be
discussed further in the following chapter. More generally, however, the
condition (4.3.49) is satisfied if v{?) is a skew-symmetric tensor and Uskn,m
a symmetric tensor in the indices n and m.

The results on the frame-indifference of various multiphase variables
presented above can be used to prove that the fields

koijky, Kaijs Gaijs Baijk, Jojk (4.3.50)
defined by (3.4.5), (3.4.6), (3.4.10), (3.4.11), and (3.4.13), respectively, are
not frame-indifferent. The general results of the change of frame trans-
formation properties of multiphase variables discussed in this chapter will
be very useful in the following chapters dealing with special cases of the
theory.

4.4 Remarks on the Closure of Conservation
and Balance Equations by the Constitutive
Relations

The conservation and balance equations of structured multiphase mixtures
discussed in chapters 2 and 3 are assumed to model a wide variety of
mixtures. Depending on the application, a multiphase mixture may be
comprised of solid, liquid or gas phases, and the diversity of such mixtures
of materials is represented in the theory by the constitutive equations. A
constitutive assumption is, therefore, a restriction placed upon the material
constituting the multiphase mixture and is expressed as a relation between
the thermodynamic variables of the mixture at some instant of time and
possibly at all instants of the mixture’s past history, as discussed in detail
in chapter 6. In effect, the applied mechanical and thermal fields (such
as mechanical forces and heat flux) cause the material of each phase to
undergo a motion and exchange energy with the surrounding phases. The
thermodynamic state of a phase may, in general, depend on the past history
which is simply a statement or principle of determinism or causality where
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the cause preceds the effect. A process defined by a time-dependent set of
configurations, forces and moments of forces, temperature, internal energy,
entropy, heat generation, heat flux, inertia, gyration, etc., and compatible
with the conservation and balance equations will be called a thermody-
namic process. When a thermodynamic process is compatible with the
constitutive assumptions under the consideration, then such a process will
be called admissible. The basic notions of constitutive equations sketched
above were laid down by NoOLL (1958) and COLEMAN & NoLL (1963) for
single phase materials, and by DOBRAN (1985) for multiphase mixtures
without the phase change.

As an introduction to the discussion in chapter 6 involved with the the-
ory of constitutive principles of multiphase mixtures, the thermodynamic
process is defined by x = x,,(Xa,t) and by the following fields which
depend on x and ¢:

ﬁa’ &a’ Ta’ ba’ Ma (OTT(T;)’ Ea’ (—la’ 7.:(1’ §a’ 00’ §a’
ia, V(a), 1oy Ua, Loy Aay Sa, ta, Loy €ay Goa; @ =1,...,7 (4.4.1)

as may be seen by examining the governing field equations (2.4.14), (2.4.19),
(2.4.31), (3.4.19), (3.4.8), (3.4.14), (3.3.3), (3.4.1), (3.4.5)-(3.4.7), (3.4.10)-
(3.4.13), (4.3.47), (3.4.15), (3.4.16) and (2.4.45). The balance of mass
equation (2.4.14), linear momentum (2.4.19), energy (3.4.19), equilibrated
inertia (3.4.8), and equilibrated moments (3.4.14) provide 19y scalar equa-
tions whose number is far less than 144y unknown variables listed in (4.4.1).
To solve the governing field equations requires, therefore, a specification
of large number of constitutive relations in terms of independent variables
in the thermodynamic process represented by the kinematic, thermal, and
phase change conditions of the mixture. This “closure” problem will be
studied further in much more detail in chapters 6-8 dealing with the con-
stitutive equations.

4.5 Concluding Remarks

At this stage of the analysis it is possible to develop different models of
multiphase flow based on different constitutive assumptions, or to post-
pone with this development of the theory and discuss special forms of field
equations. This latter approach is desirable for two reasons: (1) for the
purpose of developing simpler modeling approaches, and (2) for comparing
the results of the theory with the available field equations of structured
multiphase mixtures. As will be seen in the subsequent chapter, a special
case of the theory that has been developed in this and preceding chap-
ters will allow us to place into a direct correspondence the averaging and
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postulatory theories of multiphase mixtures and, therefore, fulfill the third
objective set forth in section 1.2. The development of constitutive equa-
tions of structured multiphase mixtures is resumed in chapter 6.



CHAPTER 5

SIMPLIFICATION OF THE THEORY
OF STRUCTURED MULTIPHASE
MIXTURES

The theory of multiphase mixtures with structure developed in chapters
2 and 3 involves the basic set of balance equations of mass, momentum,
energy, and entropy inequality, and an additional set of transport equa-
tions for the equilibrated inertia and equilibrated moments for modeling
the structural characteristics of each phase. The additional transport equa-
tions, expressed by (3.4.4) and (3.4.9), are second order tensor equations
which, in general, consist of fourteen partial differential equations for the
evolution of inertia, 7,;;, and gyration, 1/,(]“ ). This large number of equations
together with the large number of phases that may be present in a mixture
may be extremely difficult to solve. For this reason, a simplification of the
theory of structured multiphase mixtures becomes of considerable practical
necessity.

In this chapter, a simplification of the theory is discussed by invoking
further restrictions on the material motion relative to the center of mass.
This involves a decomposition of motion into rotational and dilatational
effects. If, moreover, the rotational effect is ignored, then the resulting
balance equations become similar to the equations advocated in the pos-
tulatory theories of mixtures discussed in chapter 1. The purpose of this
chapter is, therefore, to present special cases or simplified forms of the field
equations developed in previous chapters, and to compare the results with
existing models of structured multiphase mixtures.

5.1 Further Restrictions on the Material
Deformation Relative to the
Center of Mass

The basic material deformation postulate (3.1.1) or (3.1.2) contains an as-
sumption that the material of each phase can undergo only a homogeneous
or affine deformation relative to the center of mass. The affine deforma-
tion has the property of preserving mappings of hypersurfaces so that an
ellipsoid in the reference configuration space of material is mapped into an
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ellipsoid in the deformed or spatial configuration space, or vice versa.
A simple example of an affine deformation consists of rotation and di-
latation that may be expressed as follows:

v = 2l2) 1 u8i; (5.1.1)

where &Sa denotes the material derivative of a function ¢, of phase a ex-
pressing the dilatational rate, whereas u( %) is a skew- symmetric tensor
o) = i) 5 = (5.1.2)
expressing the rotational effect. These material deformation characteristics
may be seen more clearly by noting that in a three-dimensional space every
skew-symmetric second order tensor can be represented by an axial vector

we, e,

@y _ 1 .
p,g ) = 5 ki ¥y ( ) (5.1.3)
where ¢,; is the alternating tensor, or equivalently as

5 = —e;pul™ (5.1.4)

Using (5.1.2)-(5.1.4) in (3.1.11) results in an expression for the velocity of
a particle of phase a in the spatial configuration space

v = (@) | @) gled) | g eled) (5.1.5)

This result clearly shows the rotational and dilatational effects of material
relative to the center of mass. The rotational rate or angular velocity is
expressed by p(®), whereas the dilatational velocity is expressed by ¢, &%),
The scalar function ¢, represents the dilatation or stretching effect and
may be set equal to the wvolumetric fraction of phase a in the averaging
volume U. The association of ¢, with the volumetric fraction of phase «
is, clearly, a further constitutive assumption, and may not be a valid choice
as further discussed in section 6.12 dealing with the internal constraints.

To prove that ¢, represents dilatation can be accomplished easily for
the situation of no rotation. Setting u(a) =0 in (5.1.1) and using (3.1.10)
gives

7 = dat™ (5.1.6)

which upon integration yields

€99 = e2p(do — o) £ (Gao) (5.1.7)
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It then follows that

6 o )= 2 (5:19
€ )] -

This result shows that the stretching or extension of phase a occurs for
Ao > 1 (da > ¢ao), whereas a compression occurs for Ay < 1 (do < @ao)-

In simplifying the theory of structured multiphase mixtures developed
above, an additional assumption is made that the material of each phase
has an isotropic inertia tensor, i.e.

laij = tadij (5.1.9)

The assumptions (5.1.1) and (5.1.9) are, clearly, the constitutive assump-
tions, since they specify or restrict the motion of material in the mixture.
They greatly reduce the complexity of the theory by reducing the number of
transport equations for the equilibrated inertia and equilibrated moments
from fourteen to eight, as further discussed in the next section.

5.2 Balance Equations of Multiphase Mixtures
with Rotation and Dilatation

In this section use will be made of (5.1.1) and (5.1.9) to simplify the theory
of structured multiphase mixtures discussed in previous chapters. Here, as
in chapter 3, various forms of the field equations will be presented and their
properties discussed. Of particular importance in this discussion will be
the principle of material frame-indifference, since this principle restricts the
change of frame transformation properties of the kinematic, dynamic, and
energetic variables appearing in the conservation and balance equations of
multiphase mixtures.

5.2.1 Balance Equation for the Equilibrated Inertia

Making use of (5.1.1) and (5.1.9) in (3.4.4) results in the following simplified
form of the balance equation for the equilibrated inertia:

Babin(ia — Zade) = —Eatabin + kajn (5.2.1)
from where it follows that

P (e — 2§a$a) = —Coly + icajj; j=n (5.2.2)

kajn=0; j+#n (5.2.3)
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An equivalent form of (3.4.8), or of the above equations, is

b

ﬁa:z:a = —éa;a + Kojj + kajjii + ’:’ajj (5.2.4)
and from (3.4.3) and (3.4.5)-(3.4.7) it follows that
kajj = &a';.ajj - (pajamjj),m = éaga“ ( a]]n),m (&aUajjm),m
(5.2.5)
kajji = —Pakaiji = =05 Unjjn — GaUagii (5.2.6)
K.j; = 2ﬁa¢\5a;a (5.2.7)
’:’ajj = éa;ajj (5.2.8)
Kajn = 0, iéajn + kaj,,,',,‘ =0 for ] 75 n (5.2.9)

where in obtaining (5.2.5) and (5.2.6) use was made of (4.3.47) and (5.1.1).

It is shown in chapter 4 that the basic material deformation principle
(3.1.1) yields frame-indifference of l::aj,, and l:taj,,, but not of kqijr and Ka;j.
The additional material deformation assumptions (5.1.1) and (5.1.9) give
also the frame-indifference of K,;; (cit. (5.2.7)), since fq, 1, and &Sa are
assumed to be frame-indifferent scalars. Notice, however, that kqj; is
not frame-indifferent unless the rotational effect of the material is ignored
(0 = 0). The isotropy assumption (5.1.9) of the inertia tensor, when
used in (4.3.40), gives

%

LaE1o

[0 4

XL

. (5.2.10)

which upon using in (5.2.4) and noting the frame-indifference of g, ¢, Tay
K,jj, and ko;; requires the frame-indifference of k,jji;. This result is, of
course, a special case of (4.3.49) that requires

. (a

D WUniini =0 or frame — indif ferent (5.2.11)

Substituting equation (5.1.1) into (4.3.25) and (4.3.27), and noting the
frame-indifference of ¢, and V¢,, produces the change of frame transfor-
mation properties of the rotation tensor o %) ie.

7™ = Quiie) Qtm + QimQms 72 = Qi QunQuadfy,  (5.2.12)

From (5 1.2), 5 =0, and equation (5.2.11) is satisfied identically, but if

11
1#mn it is sufficient and necessary that U,jjn,i is symmetric.
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5.2.2 Balance Equations for Equilibrated Moments

Using (5.1.1)-(5.1.3) and (5.1.9) the symmetric and skew-symmetric parts
of (3.2.13) are given, respectively, by

ﬁa;a[((ﬁ;sa) + &a&a - (a) ( ))5Jk + p,(a) (a)]
= Sagity + l_’aza(jk) + /\a(jk)m,m + Ta(jlc) (5.2.13)

pa"a(ll’(a) + 2¢a#l )) _Ele(Sa[Jk] + pala[Jk] + ’\a[Jk]m m T Ta[Jk])
(5.2.14)
where parentheses and brackets enclosing pairs of indices denote, respec-
tively, symmetric and skew-symmetric parts. FO}' example, A,(jpym =
2(Aajbm + Aakjm) and Aajitim = 3(Aajbm — Aakjm)- Tajk is defined as

-8 A

Tajlc == _paV](::.?mIamjn - ﬁa”r(:q)iak,mzajq
= Jajk — l)](c(:.)icajn — Pokajr — ﬁal;r(:j) Bakmia — PaPabokjla  (5-2.15)
aJJ ¢a( in [Uajnl + Pazavaj ]) + P', Emlz( Jﬂ m a]nl + Pazaval m)
where use is made of (4.3.47), (5.1.1), and (5.1.4). Substituting (5.2.15),

into (5.2.13) and noting the frame-indifference of (¢o), ¢a, Say Aa;, V&,
U,, and trD,, establishes the symmetric part Za(jk), of the body force
moment Zajk-, as

Bola(ity = Pata(pPp® — p®p85)

1 -, N
2#’5 )[Emll(ukn mUaJnl + }n)m aknl) + ﬁaza(vak,mfmji + vaj,mfmki)]

(5.2.16)
with (5.2.13) reducing to
ﬁa;a((&sa) + &50&50)5]']9 = -a(ch) + ’_\a(.ik)m,m - pa;a&aDajk
__¢a(Vk[, a]lz V}ZzUakli) (5.2.17)

Multiplying (5.2.1) by ¢, and adding the result to (5.2.17) results in
the following equation:

Paliada — iabada)bit = -a(ch) + Aa(itymm — CataBabik + Eaiiadik
_pa:’f:a&aDajk _¢a(Vkl, ajli + VJ Uak[,) (5.2.18)
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Using (5.2.15); in (5.2.14) gives an alternate form of this equation, i.e.
5k (1) + 2 :l,[g, 5 0t Ao
Pota(fty’ + 20 " o) = zetik[Sapin] + Palalik] + Aafjkimm

1
+paza¢a a]k+§ll', )(Emlz(l/]cn mUaJnl ]ﬂ)ﬂl aknl)

+pa;a(5ak,m€mji - '5aj,m€mki)) - §$a(V1£Z)anjzi Jl ,Uaklz)] (5-2-19)

5.2.3 The Energy Balance Equation

The special material deformation assumptions (5.1.1), (5.1.2), and (5.1.9)
reduce the energy supplies (3.4.16) and (3.4.17), and the energy balance
equations (3.4.18) and (3.4.19), to

. 1 o) - (o o N —
éa =€y + cai(vaivaz + V,(m) fm)za + ¢a¢aza) + (V( ) + ¢a5im)sami
(5.2.20)

éoz = "i’aiﬁai - &aga - Ejmn[#'g:!)(gamj + ﬁazamj) + (ﬂg.a)xamji
+€nik#£:)ﬂ§ca)iaﬁajﬁa),i] + [¢a(§aiz’ + ﬁalaii) + (¢a’\ammi - ¢a¢aﬁaﬁaiia),i]

el AT L
_pa(zall}")p’gn)) - §Pa('la¢a¢a) + €a

(5.2.21)

1~ 2 (o _ % -
2vazvaz + ’hx#( ) ( ) + < za¢a¢a) — (Tazjvaz),_] Qois + pabaivai

_éaga - Ejmn[y’na (gamj + pa amj) + (F’n amji + Enzkﬂ(a)#§c )Zavajpa) z]
+pa7.:a + &Sa(gaii + pa‘eaii) + (¢aAammi - ¢a¢avaipaza),i + ea

pa(fa +

(5.2.22)

ﬁaé'a = TwijVaij — Qaij + PaTa + (1‘/,-(,‘;),,1 + &Sa,qé,-m)ﬁamiq
a y . - F A [~ 1 - o~
_maiﬁaz (V( ) + ¢a5im)(gami + pafami) — Co [Ea - §vaivai
1 K a)ala a) ~{a
_520‘( '(m) 1("1) + &a&a 2pa( z(m) z(m) + &oﬂsa)za + ea (5223)

The energy balance equation (5.2.22) illustrates that the total energy of
phase a consists of the internal energy, the kinetic energy of the center of
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mass, and the rotational and dilatational kinetic energies relative to the
center of mass. The total energy is balanced by the work produced by sur-
face and body forces, heat transfer and heat generation, phase change, and
energy transfer resulting from the structural characteristics of the mixture.

The special material properties expressed by (5.1.1) and (5.1.9) have
considerably simplified the equilibrated inertia, equilibrated moments, and
energy equations to (5.2.4), (5.2.18), (5.2.19), and (5.2.23). These equa-
tions express the evolution of inertia i,, dilatation ¢,, angular velocity
p(®), and energy &,, and must be supplemented by the balance of mass
equation (2.4.14), balance of momentum equation (2.4.19), and by the ap-
propriate constitutive relations. The entropy inequality (2.4.45) may be
used to restrict the form of the assumed constitutive equations as will be
further discussed in later chapters. An inspection of the special forms of
balance equations in this chapter indicates that a considerable further sim-
plification may be achieved by ignoring the rotational effect of material
relative to the center of mass. The results obtained with this very special
assumption of the material deformation are worth deriving and discussing,
since, as will be seen below, such a special case of the theory produces
simple, yet very powerful, results.

5.3 Balance Equations of Multiphase Mixtures
with Dilatation

The additional assumption that the material deformation relative to the
center of mass involves only dilatation, reduces the balance equations of
multiphase mixtures discussed in the last section into simpler forms. This
simplification is achieved by setting ©#(*) =0 and p® =0in (5.2.5), (5.2.6),
and (5.2.13) to (5.2.23). The resulting model is, therefore, described by
the following balance equations:

o + Pabaii = ta (2.4.14)

BoVai = Toijj + Pabai + Mai — Cabai (3.4.2)
Moij = Toij — Tosi (2.4.31)

Paic = —Eaia + kojjii + Kajj + kajj (5.2.4)

Po(iada)it = —Catadabit + ﬁafa(jk) + Ba(ikymm + Ga(ik)
(from (5.2.18)) (5.3.1)
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L.S_‘oz[jlc] + paza[jk] + xoz[jlc]m,m + p_a;a&awajk - &a(&a),an[jk]i =0
(from (5.2.19)) (5.3.2)

paga = Taij’aai,j - .q_alc,lc + pa'i:a - ﬁzai'i}ai - galckQSa + hakkm¢a,m

1 :: LY N - N - 1': A 1 -~ v
+"’paza¢a¢a - pa¢afakk - ca(Ea - Eza¢a¢a - Evaivai) + €a

2

(5.3.3)

- Y (_la -a';:a P a
Pasa + V(=) — = bt a2 0 (2.4.45)

where

ihai = ﬁai + &aiai (3-4.1)
Pai = fai — Paifadata  (from (3.3.3)) (5.3.4)
kajji = —Q\SaUajji (from (5.2.6)) (5.3.5)
Kojj = 2paaia (5.2.7)
kajj = &a;.ajj (5.2.8)
Bafa(ity = Sagry  (from (3.4.12)) (5.3.6)

5 1_~ . -
ha(itym = Aa(ikym — §ﬁaza¢a(vak5mj + Vajbmk) (from (3.4.11)) (5.3.7)

A - T Y 3 1 ~ - 3 Y ~ - % Y
ga(jk) = Go(jk) + Pa1a¢a¢a5jk + E[vak(pazaqsa),j + vaj(pa’a‘ﬁ::),k]

(from (3.4.13)) (5.3.8)

-&a(.ik) = %éa&sa(;ajk + ';-akj) - %[(&a&saUajkm),m + (&a&aUakjm),m]
(from (3.4.10)) (5.3.9)

&y = 6o + %aa(a,&saq‘sa + ailai) + Saiita  (from (5.2.20)) (5.3.10)
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Equation (5.3.2) may be used to produce restrictions on the body moment
Za[jk] as a necessary, but not sufficient, condition

paiauk] —pazaqba sk (5.3.11)

and skew-symmetry of S, and A,

(gajk - L.S_‘c!lcj) + (xajkm,m - ak]m m) ¢a(¢a) (Uajkz - Uakji) =0
(5.3.12)

From the above equations, it may be noted that the variables
Pair Kajiis Kajis Kajss faiikys GaGt)y Loy =0 (5.3.13)

are frame-indifferent, whereas the following variables

Mai, ha(ityms Ja(iky Car Lagii] (5.3.14)

are not.

5.4 Comparison of Results with Other Theories
of Structured Multiphase Mixtures

The special results of the theory of multiphase mixtures discussed in the
previous section are useful for comparison with the postulatory theories of
GoODMAN & CowiN (1972), PAssMAN (1977), PASSMAN et al. (1984),
DRUMHELLER & BEDFORD (1980), and AHMADI (1985). As discussed in
chapter 1, the GOODMAN and COWIN’s theory of granular media includes
additional balance equations for the equilibrated inertia and equilibrated
force, whereas the theory of PASSMAN and co-workers is a generalization
of the same theory that includes the additional effects of the inertia body
forces. The field equations of multiphase mixtures of DRUMHELLER, BED-
FORD, and AHMADI also involve additional transport equations and these
models too will be compared with the results of the previous section.

The balance equations of multiphase mixtures advocated by PASSMAN
and co-workers (1977,1984) are an extension of the work of GOODMAN &
COWIN (1972) and are of the following form:

Pa + Pavaii = Cq (5.4.1)
Pa'l\)ai = Laij,j + pabai + 'ﬁla,‘ - éavai (5-4-2)

-

Moij = Toij — Taji (5.4.3)
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Pako = —Coka + kaij + Ko + kg (5.4.4)

Ay

Pa(ka&sa) = —éak(:!&a + pa(‘ea + fa) + hai,i + ga (5-4.5)

paéa = LaijVai,j — Qais + PaTa — Thaivai - gc:!&a + hai&a,i
1 [N N 1 1 NN
+'2'Paka¢a¢a - Pafa¢a - éa(fa - '2'vaivai - Eka¢a¢a) + éa (5-4-6)

_9_(1 R PaTa

PaSa + V. 0(1 0(1

+ EaSa = 7o (5.4.7)

where: p, is the density, v, is the velocity, é, is the growth of mass,
T, is the stress tensor, b, is the body force, m, is the growth of linear
momentum, M, is the growth of angular momentum, k, is the uquilibrated
inertia, k, is the equilibrated inertia force, K, is the inertia body force,
ko is the growth of equilibrated inertia, ¢, is the volumetric fraction, £, is
the equilibrated body force, f, is the equilibrated force supply or intrinsic
body force, h, is the equilibrated stress, §, is the growth of equilibrated
force, €, is the internal energy, q, is the heat flux, r, is the body heating
or heat generation rate, é, is the growth of energy, s, is the entropy, 6,
is the absolute temperature, and 4j, is the growth of entropy of phase a.
Moreover, the growths &, g, My, ku, o and &, are required to satisfy
the following conditions:

Y éa=0 (5.4.8)
za:rhm- =0 (5.4.9)
S_aj M,;=0 (5.4.10)
> k=0 (5.4.11)

> 0= (5.4.12)

Y Ea=0 (5.4.13)
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>G>0 (5.4.14)
a

Equations (5.4.1)-(5.4.7) are, clearly, identical to the special results of
the theory presented in the last section and expressed by equations (2.4.14),

(3.4.2), (2.4.31), (5.2.4), (5.3.1), and (5.3.3) if the following identification
of phase variables is made:

Pa = ﬁa, Vo = {’a, éa = éa, Ta = Ta, ba
Ma = Ma, ka = ;a, kal' = kajji, Ka = Kajj,
bo = Lbokky fo = fakk, hoi = hokki, Jo= aukks
€a = €xy, Qo = Qay Ta = Ta, Sa = Sa, 0o =0, (5.4.15)

(23]
o — kajj,

<

The balance equations of multiphase mixtures from the postulatory the-
ory can be, therefore, derived from the volume averaging approach and
special assumptions of the material deformation relative to the center of
mass. This result is significant, since it provides a direct correspondence
between the averaging and postulatory theories of miztures and fulfills the
third objective set forth in section 1.2. This correspondence between the
averaging and postulatory theories of multiphase mixtures is, however, not
total, since there are some very important differences between the two of
them. These are:

1. Equation (5.3.2) does not appear in the works of PASSMAN and co-
workers.

2. The phasic balance variables kqjji, Kaj;, l}ajj, Zakk, fakk, Rokki, and
Jakk are of higher tensorial order than the corresponding variables
in the postulatory theory, and their physical meaning is, therefore,
broader.

3. The entropy inequality of phase a (2.4.45) contains the entropy source
§o and its left side is assumed to be positive semidefinite (validity of
the local axiom of dissipation within each subvolume of phase a),
whereas (5.4.7) contains no such restriction.

4. The conditions on the growths expressed by (5.4.9)-(5.4.13) are not
necessarily satisfied in the volume-averaged field equations, as dis-
cussed in sections 2.5 and 3.4.2.

The condition (5.4.8) is identical to the condition (2.4.17). Using (3.4.1)
and (5.3.4) in (2.4.26) it may be seen that this does not yield p = 0 as
stated by (5.4.9), unless the surface tension and structural characteristics
of the mixture are ignored (cit. (2.4.25)). The condition (5.4.11) may be
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satisfied if there is no phase change (this is shown using (5.2.8) in (3.4.34)).
The conditions (5.4.12) and (5.4.13) are also not satisfied as may be seen
from (5.3.8), (5.3.9), (5.3.10), (3.4.33), and (3.4.35). The global entropy
production condition (5.4.14) is, of course, satisfied as can be observed
from (2.4.50). The claim that the growth variables &,, o, My, ko, Ja
and é,, when summed over a, reduce to zero is based on a principle of
TRUESDELL (1984, page 221) that the motion of the mixture is governed
by the same equations as is a single body. The motivation behind this prin-
ciple is discussed in section 2.5. It basically requires that the growth of
source terms for the mixture as a whole produce no effect due to the mutual
cancellations. The reason that the volume-averaged theory of multiphase
mixtures together with the special deformation assumptions involving di-
latation does not yield such restrictions on these growth or interaction
variables should be clear. In view of the demonstration that the postula-
tory theory of multiphase mixtures described by equations (5.4.1)-(5.4.6)
has an existence within the very special case in the theory of mixtures
based on the volume averaging approach, it is unlikely that the conditions
(5.4.9)-(5.4.13) are satisfied in general. An additional important difference
between the special theory of multiphase mixtures and that of PASSMAN
et al. (1984) is the assumption in the latter works that the phase vari-
ables h,, m,, o, and é, are frame-indifferent. According to (5.3.14) these
variables are not frame-indifferent separately, but V-h, + g, is, as may be
seen from (5.3.7)-(5.3.9).

DRUMHELLER & BEDFORD (1980) used a variational formulation to
develop a theory of immiscible mixtures. Their theory is based on the
“HAMILTON’s extended variational principle” of the following form:

ta
/ (6t — 6V + 6W)dt = 0 (5.4.16)
iy

where T and V are the mixture’s kinetic and potential energies, W is the
virtual work, and ¢, and ¢, are arbitrary times. The total kinetic energy is
assumed to consist of the translational energies of mass and virtual mass,
and of the dilatational energy which accounts for expansion and contraction
of each phase. The dilatational kinetic energy is modeled in terms of the
inertia I,, densities p, and 4, = po/da, and volumetric fraction ¢,, i.e.

1
5Pala¥o¥ (5.4.17)

with I, (and virtual mass) assumed to be given by the following constitu-
tive equation:

I = 0(71""’7‘7a¢1,'--,¢7) (5.4.18)
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The virtual work and potential energy terms involve works due to the
stress tensor, body force, momentum supply or interaction of each phase,
and due to the variations of density (with the generalized force P,) and
phase change (with the generalized force S,). By ignoring the virtual
mass effect in the theory (BEDFORD & DRUMHELLER,1983), the resulting
variational formulation produces the following equations (in the notation
of this monograph):

Po — PaVaii = Ca (5.4.19)

Y éa=0 (5.4.20)

ﬁa;;ai = &aiaz + Taij,j + pagai + i)ai + A¢Sct,i — HBayg + &aT,i

9 - Pagq— a YaYaYn,i pfla 7'17'170! i T Pa a¢n7a7a n,i
oI, ‘
p'l a¢ 7ﬂ7ﬂ¢a z) (5.4.21)
I Pa o
pa(Ia7a) = —Cal aYa + = ana_ 7r;7r; :)'__ + e (5422)
1 _ oI, . Po _
2 En: g, Tt g —A=0 (5.4.23)
1 1 dr
_~ai~ai Ia oV ___ N KN
5 Yail —}-2 YoYa + Sa o (dt), (5.4.24)

where A, T, po, Pa, and S, are the Lagrangian multipliers that include the
constraint equations (5.4.19), (5.4.20), and

Y da=0 (5.4.25)
The energy balance equation is assumed to be of the following form:

pa\éa = _éaéa + Ta,Jvan + P 1(3 - S ca - Qaz + para + ea (5 4 26)

[0 4

where &, is the energy interaction. In addition to the above equations, the
following conditions and entropy inequality were also assumed:

D Pai=0 (5.4.27)
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3 (PaiBai + &) = 0 (5.4.28)
3 (Pae + v.% Féasa— 2Ty >0 (5.4.29)

An interesting result of the above theory is equation (5.4.22) which
describes the evolution of structural characteristics of the mixture: the
inertia and volumetric fraction of each phase. When this equation is com-
pared with the result of the special theory of mixtures expressed by (5.3.1),
it is seen that its form depends on the constitutive assumption (5.4.18)
which does not clearly express the material deformation assumption, as
contrasted with (5.3.1) which is a result only of a restriction imposed on
the material deformation relative to the center of mass. Although the the-
ory of DRUMHELLER and BEDFORD and the special theory of multiphase
mixtures discussed in section 5.3 are both assumed to model the dilatation
or the expansion and contraction of each phase in the mixture, the re-
sults of the variational and volume averaging approaches are considerably
diffferent. These differences may be summarized as follows:

1. The variational theory yields only one additional equation to model
the structural characteristics of mixture, whereas the averaging theory
produces many more (cit. (5.2.4), (5.3.1), and (5.3.2)).

2. The variational theory is based on an additional restriction expressed
by (5.4.18).

3. The volume averaging theory employs the local axiom of dissipation
which is assumed valid within each subvolume of each phase (see chap-
ter 2), whereas the variational theory is based on an entropy inequality
for the mixture as a whole.

4. The conditions (5.4.27) and (5.4.28) are not necessarily satisfied in
the volume averaging theory.

5. The momentum equation (5.4.21) appears to be more general than
(3.4.2). This is, of course, misleading, since the momentum interac-
tions P, in {3.4.2) and (5.4.21) are not necessarily equivalent.

6. The volume averaging theory allows for the specification of intrin-
sic and extrinsic forces and couples in the additional field equations
which must be described by the constitutive relations, whereas the
variational theory is constructed on the basis of the constitutive as-
sumption (5.4.18) and, as such, it does not allow for the specification
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of arbitrary sources. In effect, there is no clear separation between
the balance and constitutive equations in this theory. This point was
also criticized by PASSMAN et al. (1984).

AHMADI’s (1985) study of multiphase suspension flows without the
phase change is also made with the balance equations for the equilibrated
force and equilibrated inertia. His balance equation for the equilibrated
force is similar to (5.4.5) (with é, = 0 and pa f, included in hq;), whereas
his balance equation for the equilibrated inertia has the form of (5.2.2)
with é, = 0 and kajj = 0. In addition to the conservation of mass and
balance of linear momentum, energy, equilibrated force, and equilibrated
inertia, AHMADI also includes within the theory of multiphase mixtures
the conservation equations for the microinertia of each phase and balance
equations for the angular momentum. The latter equations express the
time rates of change of the microgyration in terms of microinertia, couple
stress tensor, body and internal body couples, such that these equations
have some similarity with (5.2.19) with 7, set equal to the microinertia and
a constant. AHMADI’s justification for the use of such a varied set of field
equations comes partially from the granular media equations of GOODMAN
& CowiN (1972) and partially from the micromorphic theory of ERINGEN
(1964). His energy equation of each phase includes the work done by the
rotation of particles, but this expression differs considerably from (5.2.23)
and precludes, therefore, a detailed comparison with the present work.

5.5 Concluding Remarks

In this chapter the theory of multiphase mixtures developed in previous
chapters was simplified by invoking further restrictions of the material de-
formation relative to the center of mass. By decomposing the material
motion relative to the center of mass into rotation and dilatation, and by
assuming that the inertia tensor is isotropic, produces considerable sim-
plification of the additional balance equations. By ignoring the rotational
effect has then allowed a comparison of results with the existing structured
theories of mixtures.

The ezisting theories of structured multiphase miztures are very spe-
cial, since they have an existence property within a very special material
deformation assumption relative to the center of mass in the volume av-
eraging approach. It also appears that these theories assume incorrectly
the frame-indifference of many phase variables and, consequently, the con-
stitutive equations constructed on such assumptions are incorrect. The
volume averaging approach together with a basic assumption of the mate-
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rial deformation relative to the center of mass of each phase have shown
to be very powerful to derive additional field equations for modeling the
mixture’s structural properties.



CHAPTER 6

CONCEPTS AND PRINCIPLES OF
CONSTITUTIVE THEORY

6.1 Purpose of the Chapter

Useful models of multiphase mixtures are constructed by determining the
constitutive relations for different types of mixtures. A multiphase mixture
may contain fluid- and solid-like phases, each of which responds differently
to mechanical loading and heat transfer. Consequently, a constitutive as-
sumption should reflect as closely as possible the true material behavior
over the anticipated range of thermomechanical processes. For this reason,
the construction of constitutive equations should be based upon a rational
set of constitutive methods or principles possessing a sufficient mathemat-
ical structure to be useful in the development of practical models. In
contrast to the single phase multicomponent mixture theory, the consti-
tutive concepts and principles for multiphase mixtures are not sufficiently
developed. Our objective in this chapter will be to develop these concepts
for multiphase mixtures by assuming that there exists a rigorous set of field
equations as presented in chapters 2 and 3. The concepts and principles of
the constitutive theory presented in this chapter will form a foundation for
the study of constitutive relations of special mixtures in subsequent chap-
ters. As a basis for this development, many concepts will be borrowed from
single phase (single component and multicomponent) continuum theories
that may be found in the works of NoLL (1958), TRUESDELL & NOLL
(1965), and BowEN (1976).

6.2 Principle of Determinism

The thermodynamic variables in the conservation and balance equations
of multiphase mixtures define the thermodynamic process for the mixture.
For the field equations discussed in chapters 2 and 3, these variables are
summarized by (4.4.1), i.e.

— -~ A

P, = (x: XaK,(Xa,t)’ Pos éa, Ta, baa Maa Ea’ Qo 'Faa ';aa ga, 30,
fa, ¥, 14, U, Loy A, Sa Ty Leay b0y Ga); @ =1,...,7 (6.2.1)
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The constitutive equations or relations are a collection from this set of
thermodynamic variables which satisfy the principle of the material frame-
indifference and which are expressed in terms of independent thermody-
namic variables. The number of independent variables depends on the con-
straining conditions of the mixture, such as no phase change or constant
density of some phases. For a mixture in motion and exchanging energy
between the phases, the independent thermodynamic variables reflect this
mechanical and thermal conditions of the mixture.

In the absence of structural effects and thermal and phase change pro-
cesses, the dynamic conditions of the mixture (such as the stress tensor)
can be expressed in terms of the kinematic variables. The field equations
(2.4.14), (2.4.19), and (2.4.31) may in this instance provide a solution for
the density and velocity fields for prescribed values of the body force b,
and constitutive equations T, and p,, with the latter given in terms of
the kinematic variables. With the allowance for heat transfer between the
phases of the mixture we need to adjoin to the kinematical and mechanical
set of field equations the energy equation (3.4.19) which introduces the
energetic variables the internal energy é€,, heat flux q,, heat generation
rate 7,, and the energy interaction field é,. If, however, the prescription
of the mechanical and thermal fields were only in terms of kinematic vari-
ables, then the additional energy equation may not, in general, be satisfied
for arbitrary values of the heat generation rate 7,. We would in this in-
stance have an overdetermined system of equations that would not reflect
the additional degree of freedom brought about by the allowance for heat
transfer in the mixture. To bring this additional degree of freedom within
the theory use should be made of a physical base or experience which tells
us that the heat transfer occurs due to the temperature gradient within the
mixture. For this reason, we need to adjoin to the independent kinematic
variables the thermal variables in the form of phase temperatures for the
determination of joint dynamic and thermal response of the mixture under
the applied mechanical forces and thermal gradients.

When an allowance is made for the phase change or chemical reaction
processes occurring within a mixture, additional degrees of freedom or
independent variables must be introduced into the theory. To see this, use
can be made of the result (TRUESDELL & TOUPIN,1960, sec. 76.8)

_ Idet\Fal

Vi, =
Vo = |detF,|

(6.2.2)

in order to express the balance of mass equation (2.4.14) in the following
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form:

PaldeiFa] = |detF|éa = Pare(Xa:t)|det{CRAD Xom (Xay )]
= Ror(Xa t) (6.2.3)

where Rop(Xa,t) = po|detF,|. This result shows that the density and
motion (or deformation gradient) of phase a are independent when &, is
different from zero, and that the constitutive relations should reflect this
independence through the independent variables representing the motion
X =Xok(Xa,t) and one of the fields por(Xa,t) or Ror(Xa,t). Moreover,
to integrate the differential equations (6.2.3) it is only necessary to spec-
ify the initial conditions Rax(Xa,t)!, and motions x = x, . (Xs,t) and
temperatures for t >0 and a=1,...,, since ¢, is a constitutive relation
which, in the absence of structural characteristics of mixture, depends on
Xow (Xast), Oa(x,t) and Rop(Xq,t) for t>0and a=1,...,4.

The introduction of structural characteristics into the theory of mul-
tiphase mixtures as discussed in chapter 3 requires the consideration of
additional independent variables in the constitutive equations. The equili-
brated inertia equation (3.4.8) and equilibrated moments equation (3.4.14)
introduce into the theory the inertia tensor i, and gyration tensor »(®),
respectively, as variables for the description of material motion relative to
the center of mass of each phase. As such, these variables too should be
considered as independent in the constitutive equations, since, otherwise,
equations (3.4.8) and (3.4.14) may not be satisfied in general with i, and
v(®) included in the list of constitutive relations. Notice, however, in (3.4.8)
and (2.4.14) that if: (1) there is no phase change (¢, = 0), (2) the third
order moment effect is ignored (ja,Jk—O) (3) assuming the mixture to be

isotropic? (iasj = 2a6i;), and (4) u(a) =— J(f‘), then it implies that 7, and
Rk are constant on a material lme and would not appear as independent
variables in the constitutive relations. The assumption that u(a) (a)
implies that the mixture is micropolar where the material motlon relatlve
to the center of mass of each phase can only exhibit rotational effects.
From the list of thermodynamic variables in (6.2.1) and the relation

expressed by (6.2.3), it will be assumed that the thermokinetic variables

X = Xﬂh‘,(xﬂ’t)’ %ﬂh‘,(xﬂ,t), éﬂ(x,t)a iﬂ(x’t)a V(ﬂ)(xa t); IB = 1,° <oy
(6.2.4)

1The choice of Rax(Xa,t) instead of Par{Xa,t) as an independent variable is a matter only of
computational efficiency and not of any other restriction. By (6.2.3) it is irrelevant which of these
variables are chosen as independent.

2Isotropic mixtures are discussed in section 6.8.
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specify the thermokinetic process for multiphase mixtures, with x4, and

R4y defined for all X4 in the body Bg, and 84, i, and v? defined for
all x delivered by x4, and all defined for some given interval of time ¢.
For a given region of space £3 in which the thermokinetic process is occur-
ring, the history of this process will be assumed to define a calorodynamic
process or constitutive relations for multiphase mixtures. To determine
the thermodynamic process (6.2.1), it is, therefore, sufficient to assign the
constitutive equations for 1054 scalar variables

Ta:(éa’ Ta’ Ma’ Ea’ (_la, ‘;a’ 30, ia’ Ua’ xaa gaa Eaa Zfa, éa, qsa);
a=1,...,9 (6.2.5)

and determine the remaining 23+ fields o, ba, 7a, ia, and #(®) from the
194 balance equations (2.4.14), (2.4.19), (3.4.19), (3.4.8), and (3.4.14), and
4v independent variables of inertia and gyration tensor. The body force
and heat generation rate (b, and 7,) are the assigned quantities in usual
experiments conducted in a laboratory, and the above statement that these
fields are determined by the field equations may seem unnatural. To get
around this apparent conflict between theory and experimental method it
should be noted that we may choose the fields x5,(X3,t) and 5(x,t) in

such a way that the values of b,, and Ta, when determined from the con-
servation and balance equations, are consistent with the values assigned in
the laboratory experiment. The body force moment £, is assumed to be
given or determined through the additional equations (such as the electro-
magnetic field equations when magnetic particles are present in a magnetic
field).

The assumption that the calorodynamic process is determined by the
history of the thermokinetic process is a statement of determinism or prin-
ciple of causality, where the cause (the history of the thermokinetic pro-
cess) determines the effect (the calorodynamic process). The principle of
determinism applied to the constitutive variables in the set T, as given by
(6.2.5) may be stated as follows:

=t H
Ta(X,t)=Ga[Xfm(zﬂ,3), %;in(zﬂ’s)’ oﬂ(zas)’ ltﬂ(zas)a V(ﬂ)t(zas)’ Xﬂa t];
a=1,...,4
(6.2.6)

where G, is the functional over the fields of real functions defined as
x;ih‘,(zﬂ’s) = Xﬂn(zﬂ’t - 3)a %;ih‘,(zﬂ’s) = %ﬂﬁr(zﬂ’t - 3)a

5;(2,3) = gﬂ(z’t - 3)a i;i(z’s) = iﬂ(zat - 3)a
l/(ﬂ)t(z,s) = y(ﬂ)(z,t — 3); ﬁ = 1, ceny (6_27)
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for all s > 0 such that the set of all these variables represents possible
motion, phase change, temperature, inertia, and gyration histories of each
phase in a multiphase mixture. X}j,(Zg,s) in the list (6.2.7) is the value
of X at a time s units before the present time and is undefined for s <0.
A similar conclusion is also valid for the remaining variables in this list.
The functional notation in (6.2.6) implies that for each o, a=1,...,4, 8
ranges over all values from 1 to 4. That is, the value of the functional G,
is defined by the histories of the thermokinetic processes of the material
particles of all phases in the mixture and also explicitly by the present time
t.

The principle of determinism effectively excludes the material behavior
on any point outside of the mixture and any future event. The reverse
statement, that the present thermokinetic processes determine the past
calorodynamic process, is not generally implied by (6.2.6) due to the ne-
cessity of accounting within the theory for the irreversibility of macroscopic
processes. This irreversibility is inherent in the entropy inequality (or the
second law of thermodynamics) expressed by (2.4.45). In the continuum
theory of multiphase mixtures the entropy inequality is required to be
satisfied for all physical thermodynamic processes, and a constitutive as-
sumption or calorodynamic process that is consistent with this inequality
forms an admissible thermodynamic process. The entropy inequality places,
therefore, restrictions on the constitutive response functionals and will be

used in later chapters after studying the properties of the functional G, in
(6.2.6)

6.3 Principle of Local Action

In the development of the theory of multiphase mixtures in chapters 2 and
3 it has been alluded several times to the nonlocal character of the field
equations. The region of this nonlocality is at least as large as the volume
averaging region U, and a theory of multiphase mixtures based on volume
averaging approach should account for the size of U in the constitutive
equations. In this way the size of the averaging volume U can re-enter
into the theory and produce, possibly, a minimum loss of information of
the mixture brought about by the averaging process. In the local consti-
tutive theory of mixtures which employs the principle of local action, the
thermokinetic response of material particles of each phase is determined by
the conditions in arbitrary small neighborhoods of these particles and not
by the conditions on the outside of them. The validity of this assumption
depends, of course, on the degree of dispersiveness of the mixture. A mix-
ture containing micron-size particles is expected to be adequately modeled
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by a local theory, whereas a mixture with particle sizes with the same order
of magnitude as the characteristic flow geometry may require a nonlocal
theory of mixtures for modeling the flow processes. Notwithstanding the
importance of a nonlocal theoretical structure to model many real multi-
phase mixtures, in this book only a local theory will be developed, as this is
the first step towards studying the additional complications brought about
by the nonlocal material response.

For this purpose, define by Ng(Xjg) to be a neighborhood of the particle
Xj of phase B and let Zg denote another particle of phase 8 contained in

Np(Xp). With the assumed differentiablity of x5, Rsx, 83, ig, and v(8)
the Taylor series expansion up to and including the second order terms in
space variables can be employed to show that

Xpwi(Z8,8) ~ Xpi(Xs,8) + Fi:/(Xp,8) dXa;
+F;§iJ,K(Xﬂa 3) dXﬂ] dXﬂK (631)

R (Zs,8) ~ Ry (X, 8) + Rbye (X5, 8) dX 1
+§Rﬂn,”(Xﬂ,s) dXﬂ] dXﬂ] (632)

By(2,8) ~ B5(x,8) + B3 (%, 8) dai + By ;5(x,8) deidz;  (6.3.3)

.z:;;,-j(z, 3) ~ .z:;;”(x, 3) + .z:i;,-j’k(x, 3) dzk + :l:;;ij,k.l(x, 3) dZ]c dzz (6.3.4)

(ﬂ)t(z 8) ~ V(ﬂ)t(x s) + VP (x, s) dzy + u,(f,)d(x,s) depdz, (6.3.5)

igk
where use was made of (2.4.5) and where dXg and dx are defined by
dXs =25 —Xg (6.3.6)

dx = X (Zp,t) — xpr(Xs,t) =2 —x (6.3.7)

To simplify the development of the theory it will be assumed that the
second order terms in (6.3.2)-(6.3.5) can be ignored in comparison to the
first two terms in the series expansion. With this simplification and sub-
stitution of (6.3.1)-(6.3.5) into (6.2.6), yields

Ta(xat) Ga [Xﬂn(Xﬂ’s)’ Fﬂ(Xﬂas)a GRADF, (Xﬂas)a ‘%ﬂn(xﬂ,s),
GRAD%;JK,(Xﬂas)’ oﬂ(xas)’ Voﬂ(xas)a lﬂ(xas)a
Vil(x,s), vP(x,s), VvP)(x,s), dXg, ] (6.3.8)
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The presence of dX in the above equation comes from (6.3.1)-(6.3.5) and
signifies a possible directional dependence of the material properties or
material anisotropy at Xg.

The material dependence on the first N gradients of the independent
variables in the constitutive relations is referred to as the material of grade
N (TRUESDELL & NoLL,1965). In the constitutive assumption (6.3.8)

N =2 for x4, and N =1 for R, 9;, iy, and v(#)*. The reason for re-
taining within the constitutive assumption the gradient of the deformation
function, GRADFY, will become clear in the next chapter where it will be
seen that this allows for the dependence of constitutive variables on the
density gradients in fluid mixtures. Without the retention of this term,
the resulting mixture models may be too special to model real multiphase
flows. The retention of first gradients of independent variables in the series
expansion does not necessarily imply that the resulting constitutive equa-
tions will be linear, since other principles of constitutive theory will require
that only certain combination of independent variables form valid expres-
sions of these equations. This valid combination of independent variables
produces, in general, nonlinear constitutive relations and, consequently, a
nonlinear theory of multiphase mixtures. The constitutive assumption may
also contain restrictive conditions on the local material behavior called the
internal constraints. This particular aspect of the theory will be discussed
further in section 6.12.

6.4 Principle of Smooth and Local Memory

The principle of local memory asserts that the thermokinetic processes at
distant past do not appreciably affect the present value of the constitutive
response functional G,. The memory of past motions, phase change pro-
cesses, temperature, inertia, and gyration is thus assumed to decay rapidly.
In a sense, the principle of local memory is the counterpart in the domain
of time to the principle of local action in the domain of space.

Smooth memory is an additional assumption to the local memory as
it allows an approximation of the thermokinetic variables (6.2.7) by the
Taylor series expansion and an assumption that the constitutive response
functional G, depends smoothly on the functions occurring in this expan-
sion. For this purpose, it may be assumed that the histories (6.2.7) can be
approximated in the interval |t — s| < § by a suitable number of terms in
the Taylor series expansion which will be taken to be only up to the first
time derivative, t.e.

X;m(zﬂ, 8) ~ Xﬂn(zﬂ,t) +(t— 3)5Cﬂn(zﬂat) (6.4.1)
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Re(Zs,5) ~ Ror(Zp,t) + (¢ — 8)Rp(Zg, t) (6.4.2)
By (2,5) ~ Bs(z,t) + (t — 5)05(z,t) (6.4.3)
i, 8) ~ Ia(z, ) + (t — 8)is(z, ) (6.4.4)

vz, 5) ~ V) (z,t) + (t — 8)0P)(z,t) (6.4.5)

Substituting (6.4.1)-(6.4.5) into (6.2.6) results in an expression for the con-
stitutive response functional obeying the smooth and local memory as-
sumptions. Hence,

Ta(x’t) = GG[Xﬂn(Zﬂat)a Xﬂn(zﬂat)’ %ﬂﬁr(zﬂat)’ g}ﬂﬁr(zﬂat),
Eﬂ(zat)a ﬁﬂ(z’t)a iﬂ(zat), iﬂ(zat)’ u(ﬂ)(z,t), i/(ﬂ)(z’t)a Xs, t] (646)

6.5 Principles of Local Action and Smooth and
Local Memory Combined

The combination of results obtained for the constitutive response function-
als satisfying the principle of local action (equation (6.3.8)) and principle
of smooth and local memory (equation (6.4.6)) yields the following result:

Ta(X,t) = Galxsr(Xs:t), Xar(Xs:t), Fa(Xs,t), Fs(Xg,t),
GRADFﬂ(Xﬂat)’ GRADFﬂ(Xﬂ’t)’ %ﬂh‘,(xﬂ,t), g}ﬂﬁr(xﬂ’t)a

GRAD%ﬂKr(Xﬂ’t)a GRADg\aﬂKr(Xﬂ’t)a gﬂ(x’t)a éﬂ(xat), V;g(x,t),

Véﬂ(x,t), iﬂ(xat)a iﬂ(xat)a Viﬂ(xat)’ Viﬂ(xat)a
vO(x,t), 8)(x,t), VvO(x,t), VLB (x,t), dXs,t]  (6.5.1)

Notice that G, above is not anymore a functional, but a tensor-valued
function of the corresponding arguments. The result (6.5.1) is clearly very
special and sufficiently simple to study further constitutive properties of
Go. In what follows, the a priori validity of the smooth and local memory
in approximating G, will not be assumed, however, and use will be made
of the less restrictive form satisfying only the principle of local action to
obtain as many results as possible before simplifying the result in section
6.10.
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6.6 Principle of Material Frame-Indifference

The principle of material frame-indifference is discussed at length in chap-
ter 4 where it is stated that a change of frame of reference from F to F* of
an observer observing the same event (x,7) in F and (x*,7*) in F* may
be represented by

T=1+4+a (6.6.1)

X" = Xpr(Zs, ") = Q7)xp(Zs,7) + () (6.6.2)

Here 7 denotes the time, a is a reference time, ¢(7) is the time-dependent
translation vector, Q(r) in an orthogonal tensor satisfying (as in chap-
ter 4) detQ(t) = +1, and both ¢ and Q are smooth functions of time.
Such a change of frame transformation makes the two observers in refer-
ence frames F and F* agree on the distance between a pair of points in
space, time elapsed between a pair of events, the order in which two dis-
tant events occur, and the orientation in space. Frame-indifferent scalars,
vectors, and second and third order tensors are required to transform ac-
cording to (4.1.6)-(4.1.8), respectively. As demonstrated in chapter 4, the
constitutive relations given by (6.2.5) all satisfy the principle of material
frame-indifference.

In the reference frames F and F*, equation (6.2.6) may be written as
follows:

=t
Ta(x, t) = Ga[xgn(Zﬂ,T), ;;K,(Zﬂ,‘r), oﬂ(z,-r),
iE(Z,T), u(ﬂ)t(zaT)a Xﬂ’ t] (663)

* *t* * *t* * <" * Lk
T;(X*,t ): Ga[XﬂtK,(zﬂ’T )’ %ﬂtﬁ(zﬂa‘r )’ 0ﬂ (z s T ),
(), O, 1), Xp, ] (6.6.4)
for r > 0 and 7* > 0. In order to determine the restrictions on the form
of functional G, implied by the principle of material frame-indifference,
an approach used by TRUESDELL & NOLL (1965), section 26, will be

followed, whereby the position, time, and orientation of a moving observer
are successfully transformed away.

6.6.1 Rigid Translation of the Spatial Frame

By selecting Q(1)=1, a=0, and ¢(7)=—x4, (X3, 7) in (6.6.1) and (6.6.2)
produces a rigid translation of the spatial frame of reference in which a
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material particle remains at the origin, i.e.

™=, t'=1 (6.6.5)

Xfm(zﬂ,"'*) = Xﬂﬁ,(zﬂaT) - XﬂK,(XﬂaT) (6-6-6)

From the frame-indifference of scalar variables $},; and 5;, tensor 1 (cit.
(4.3.29)), and the transformation property of the tensor @) (cit. (4.3.25)),

it follows from (6.6.3) and (6.6.4) that
=t
T;(X*’t*) = Ga[x;ih‘,(zﬂa‘r) - x;iK,(XﬂaT)’ %;ih‘,(zﬂ"r)a oﬂ(za‘r)’
i;i(z’T)’ u(ﬂ)t(z’T)a Xﬂa t] = Q(t)TG(xat) = Ta(x’t) (667)

6.6.2 Shift of Time

The shift of time is obtained by selecting Q(r)=1, ¢(r)=0, and a = —t.
This makes the present time ¢ the reference time after the change of frame.
Thus, from (6.6.1)-(6.6.4), (4.3.29), and (4.3.25) it is obtained

Tr=T1—1, t'=t-t=0 (6.6.8)
X" = Xpr(Zs, 7") = Xpr(Lp, T +1) =% (6.6.9)
T5(x7,0) = Ta(x,t) (6.6.10)

But from the definition of the history of motion (6.2.7) and (6.6.8), it
follows that

thr;,(zﬂ,s) = Xpr(Zp t" —8) = Xfm(zﬂ, —s) (6.6.11)
and upon taking s=—7* and using (6.6.8), and (6.6.9) this becomes
XEtI;,(Zﬂ’s) = Xfm(zﬂ,"'*) = Xﬂn(zﬂ’t + T*)
= Xﬂn(zﬂ’t - 3) = xtﬂh‘,(zﬂ’s) (6'6°12)
Also,
%Zitl:‘,(zﬂ’s) = %Zih‘,(zﬂa_s) = ‘%Z‘m(zﬂ,"'*)
= Row(Zp, 7) = Rp(Zs, 5) (6.6.13)

with similar results holding for 5;;, is, and v(®), These results may now be
used in (6.6.10) and (6.6.4), i.e.

Ta(x’t) = T;(X*,O) = Ga[Xfm(zﬂ,s), \%;m(zﬂ,s),
5;(2,3), i;i(zas)a V(ﬂ)t(z,s), Xﬂ, 0] (6.6.14)
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from where it follows that T,(x,t) does not depend explicitly on time ¢.
Combining the results (6.3.8), (6.6.7), and (6.6.14) gives

Ta(xat) = Ga[F;i(Xﬂ’s)a GRADF;;(X;;,.S), ‘%fm(xﬂ,s),
GRADR:(Xg,5), Bs(x,3), Vis(x,9), T(x,5), Vis(x,s),

VP(x, ), Vu®i(x,s), dX] (6.6.15)
from where it is evident that the dependence of G, on xfm(zﬂ,s) and ¢
has been eliminated.

6.6.3 Rigid Rotation of the Spatial Frame

The rigid rotation of the spatial frame of reference is accomplished by
taking a=0, ¢(r)=0, and Q(t) arbitrary in (6.6.1) and (6.6.2). Thus,

=71, t*=t (6.6.16)
Xor(Zs, ) = Q(r)xpr(Zs,T) (6.6.17)

and if T, is a vector, for example, (4.1.6) gives that
Tr(x*,t*) = Q(¢)Ta(x,t) (6.6.18)

Using these results, (6.6.14), (6.6.4), and the change of frame transforma-
tion properties of 84, i3, and v(®) gives

To(x",¢7) = Q(t) Galxpr(Zs, 5), Ry (Zs, ),
Bo(2,9), Ty(z,9), ¥ (5, 3), Xy]
= Ga[Qt(s) x;ih‘,(zﬂ’s), %;in(zﬂ’s)’ 5:;(2,3), Qt(s)i;i(zas) Qt(s)T,
Q'(s) (7, 5) Q'(s)" + Q'(s) Q(s)", Xe] (6.6.19)
where Q'(s) is the history of Q, and Q(t) = Q!(0). Choosing in this
equation a necessary condition that Q‘(s) = I and dQ'(s)/dt =—Vv}(z, s),
B=1,...,7, gives
To(x",¢7) = Q(t) Ya(x,t) = Q(t)Galxpr(Zs, 3),
R (Zs,5), (2, 3), i5(z,3), vO(z,s), X
= Ga[qt(s)x;in(zﬂ’s)’ %;in(zﬂas)’ 5;(2,3), Qt(s){é(z,s)qt(s)T,
Q'(s)(v (2, 5) — VVj(z,3))Q'(s)", Xg] (6.6.20)



96 CONCEPTS OF THE CONSTITUTIVE THEORY

Equation (6.6.20) can now be combined with the result (6.6.15) to pro-
duce the following result:

Gan[Qt(s)FE(Xﬂ,s), Qt(s)GRADF;i(Xﬂas)a %;ih‘,(xﬂas)a
GRADR,,(Xs,9), B5(x,5), Q'(s)V5(x, ), Q'(s)is(x,5)Q!(s)",
Q'(s) Vis(x,5)Q'(s)"Q'(s)", Q'(s)b®(x,5)Q!(s)”,
Q!(s)Vr(x, 5)Q"(s)"Q'(s)"]
= Q(t)GaKr[F;i(Xﬂ’s)’ GRADF;;(X;;,.S), ;iK,(Xﬂas)a Vu(ﬂ)t(x,s),
GRADRY . (Xs,5), 05(x,5), VBs(x,), i5(x,3), Vis(x,s), b®)¥(x,s)]

(6.6.21)

where use is made of the definition of b(#) given by (4.3.26) and the fact
that F; = QFg and Fj = QriFpix (GRADF; = QGRADF3). The
dependence of G, on dXz appearing in (6.6.15) is represented implicitly in
the above equation by Gk, where the subscript ax denotes the reference
configuration spanned by dXjz. Notice in (6.6.21) that Vig, b(®, and
Vv®) are frame-indifferent quantities as proved in section 4.3.

It is useful to derive an equivalent form of (6.6.21) when the principles
of local action and smooth and local memory are combined. To derive this
result we can start from (6.5.1) by expressing this equation in the frame F*

and, to simplify analysis, ignore the terms G'RADF\‘;;, G'RAD?EL;,;, V;ﬂ,
B Vig, and VIO i,
T;(X*’t*) = Ga[x;in(xﬂ’t*)’ in(xﬂ’t*)’ FE(Xﬂ’t*)’ FE(Xﬂ’t*)’
GRADFE(Xﬂat*)a En(xﬂ,t*), %Zih‘,(xﬂat*)a GRAD%BE(Xﬂat*)a
5;(X*’t*)’ é_ﬂ(X*’t*)’ V*EZ;(X*at*)a iE(X*’t*)a iﬂ(x*’t*)a
Vi (x, ), v O(xr, %), VrB(xr,¢7), dXg, t*] (6.6.22)
Choosing the necessary conditions Q(¢)=1, Q =0, Q =0, a =0, and
c(t) = —x,k(X,,t) in (6.6.1) and (6.6.2), and using the following change

of frame transformation properties of multiphase variables as developed in
section 4.3

F; = QFg

F; = LyF5 = (QDsQT + QW5sQ” + QQT)QF, = QL;F4 + QF4
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Ror = Rox, &En = g\fﬂn, V*?; = Qvgﬂ, ;2‘; = Q{ﬂQT (6.6.23)
is = QisQ” + (QisQ7 + QisQT), v =QvQ" +QQ”

1ﬂ _ QvlﬂqTqT v pr(8) — Qu(ﬂ)qTqT
it follows from (6.6.22) that
T*(x*,t*) = Gu[Vs — V., Fg, Fg, GRADF4, Rox, Rox,
GRADR g, 85, 65, Vs, 1s, 1g, Vig, v®, Vu® dX,, 1]
= QT (x,t) = Ta(x,t) (6.6.24)

Selecting now a shift of time a=—t, Q(t)=1I, and ¢ =0 it follows from the
above equation that the explicit dependence of G, on time is eliminated,
i.e.

Ti(x",0) = Ga[Vs — ¥, Fp, F5, GRADFg, Rpr, Rox,
GRADRgk, gﬂ’ gﬂ’ Vé—ﬂa iﬂa :{ﬂa viﬂa V(ﬂ)a Vu(ﬂ)a dXg]
= QTa(x,) = Tau(x, 1) (6.6.25)

Requiring again that (6.6.25) holds in the frame F* and using the change
of frame transformation properties (6.6.23) with another set of necessary

conditions Q =I and dQ/dt=—W,, it follows that
T3 (%, t*) = Gul¥g — ¥y Fg, D+ (W5~ W.), GRADF,,
Ror, R, GRADRaxs, B, 05, Vi, i, s — W,is — LW, Vi,
v — Wy, Vo) dXs) = QY. (x,t) = To(x,t)  (6.6.26)
Notice in the above equation that

p(8) _ W, = b® 4+ (W5 — W,) +Dg

g — Wois — 3 W1 =i — Wpis — W5 + (W — W,)ig +15(Ws — W,)7

which implies that (6.6.26) can be written in the following frame-indifferent
form:

Ta(x’t) = Gaﬁ[{’ﬂ _‘.’w Fﬂa Dﬂ’ Wﬂ _an GRADFﬂa %ﬂﬁra g}ﬂﬁra
GRADRgr, 85, 05, Vi, is, is — Weis — s W, Vis, b, vu®)
(6.6.27)
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The necessary conditions considered above are also sufficient for (6.6.27)
to hold for all QQ¥ =1 and QQT = —(QQT)T. To prove this, require
(6.6.27) to hold in the frame F*, use the change of frame transformation
properties of the independent variables, and by substituting Q(¢) =1 show
that (6.6.27) is recovered or remains frame-indifferent. Thus, for G,k a
vector, the equivalent form of (6.6.21) that includes the principle of local
action and smooth and local memory is

Gan[Q(t)(‘.’ﬂ(X,t) - \.'17(X,t)), Q(t)Fﬂ(Xﬂ’t)a Q(t)Dﬂ(xat)Q(t)T,
Q(t)(Wﬂ(x’t) - Wﬁ(x’t))Q(t)Ta GRADQ(t)Fﬂ(Xﬂ’t)a geﬂl\‘,()(ﬂ’t)a

Ron(Xs,t), GRADRow(Xg,1), Balx,1), G(x,1), Q(E)VBalx, ),
Q(t)(ia(x,t) — Wa(x, t)is(x, ) — ia(x,t)W5(x,1))Q(t)",
Qt)is(x,1)Q(t)", Q)Vis(x,)Q(t) Q)
Q()pP(x,)Q(t)", Q) VrP(x,1)Q(t)"Q(t)"]
= Q(t)Gan[{fﬂ(x,t) - 97(X,t), Fﬂ(Xﬂ’t)a Dﬂ(xat)’ Wﬂ(x’t) - W7(X, t),
GRADFﬂ(Xﬂat)’ %ﬂh‘,(xﬂ,t), g}ﬂﬁr(xﬂat)a GRAD%ﬂKr(Xﬂat)’

. éﬂ(xat)’ Eﬂ(x’t)a Véﬂ(x’t)a iﬂ(x’t)a V.i'ﬂ(xat)a
iﬂ(xat) - Wﬂ(x’t)iﬂ(x’t) B iﬂ(x’t)wﬂ(xat)’ra b(ﬂ)(X,t)a Vu(ﬂ)(x’t)]

(6.6.28)

The important observations that need to be made regarding the above
result are that the constitutive response functional G,x depends on y—1
velocity differences (V3 — v,,) and spin tensors (Wg — W), and that the
structural properties of the mixture involve the inertia and gyration tensors
and their gradients. Notice that if i are isotropic (cit. (5.1.9)) then Gux

would depend on the frame-indifferent quantity iﬂ.

6.7 Material Isomorphisms

The word “isomorphism” relates to structure as the root “morph” indi-
cates, and “isomorphism” is equivalent to “having the same structure.” A
multiphase mixture may contain materials with different properties, such
as “solids” and “fluids” which may or may not have the structural order-
ing of material points. The structural ordering of material pertains to the
physical arrangement of atoms which give rise to certain crystallographic
symmetries that should be accounted by the constitutive relations, since
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these equations must be form invariant with respect to the material symme-
try transformations. In developing the concepts underlying the symmetry
properties of multiphase material mixtures, use will be made of some of the
basic concepts of single phase, single and multicomponent material theo-
ries as may be found in NoLL (1958), TRUESDELL & NOLL (1965), and
Cross (1973).

Let X5 and Xj; be two different material points of phase § with ref-
erence configurations ks and ks, te. Xg = ku(Xa,t) and Xg =
ks2(Xs2,t). If for any two neighborhoods N(Xjs ) and N(Xs;) there exist
reference configurations ks and Ks2, respectively, in which the deforma-
tion, temperature and phase change histories give rise to exactly the same
constitutive response functionals of phase a with respect to these phase §
particles, i.e.

Gark = Ga2k (6.7.1)

then the two particles or material points of phase § will be said to be
materially isomorphic. Under these circumstances, no experimental mea-
surement of G, when determined by the deformation, temperature and
phase change, can detect whether a measurement started with N(Xj ) or
N(Xs2). Expressed in different words, the above defined material isomor-
phism refers to the statement that the mechanical, thermal, and chemical
properties of the two particles of phase § are the same and that these
particles belong to the same material.

When all material points of a phase are materially isomorphic to one
another, then every neighborhood has the same properties as every other
neighborhood and it may be said that the material of the phase is uniform.
Uniform material phases may be, therefore, endowed with defects and dis-
locations, since uniformity of a phase places no restriction of choosing
the same reference configuration for different particles in the same phase.
When this choice is possible, however, it will be said that the phase is ho-
mogeneous, since then the isomorphism of all neighborhoods of a uniform
phase may be demonstrated by the use of a single reference configuration.
In a homogeneous phase § every particle of the phase responds in just the
same way as every other particle to mechanical, thermal, and phase change
histories with respect to this configuration, and G, is independent of X;.
Thus, a homogeneous phase is uniform whereas the reverse condition is not
necessarily true.

Using (6.6.21) and (6.7.1) it follows that

Galn[Fi(Xl,s),..., Fg(Xal,s),..., Fi(L,s), GRADFi(X],s),...,
GRADF(Xs,5),..., GRADF!(X,,s), R x(X1,8),. .,
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Rir(Xs1,8), ..., R (Xy,8), GRADR (X1, 5),...,
GRADRY(Xs1,5),. .., GRADR. (X,,5),
B5(x,5), VB,(x,3), (x,9), Viy(x,s), bO(x,s), VoO)(x, s)]
= G2k [Fi(X1,8),..., Fi(Xs2,8),..., F (X,,s), GRADF{(X,,s),...,
GRADF}(Xs3,5),..., GRADF(X,,3), R w(X1,9),...,
RE 1 (Xs2,8), .- -, \%fm(xv,s), GRADR: . (X4,8),...,
GRADR. . (Xs2,3),..., GRADR! (X, s),

-

Ba(x, ), VB5(x,5), i5(x,8), Vis(x,s), b©)(x,s), VvB)(x,s)]

(6.7.2)

where again the notation used implies that for each phase a, a=1,...,7,
the index B ranges from 1 to 4. Introducing now the mapping As defined
by

Xs2 = Ms(Xs1), Ps=GRAD)X;, P;' =H; (6.7.3)
as a mapping from s into ks, and using (2.4.5) it follows that

Oz Ozr 0Xsom

Fsri(Xp1,7) = 5Xos  OXoar 8Xe1y Fskrm(Xs2,7)Psarg

or
F;(Xe1,8) = F5(Xs2,5) Ps (6.7.4)
Fi(Xs2,5) = Fi(Xs1, ) H; (6.7.5)

and

Foroy(Xs2,7) = Forgpa (X1, 7)Hssp Hspu + Fsea(Xsa, 7)Hssu
or
GRADF:(Xs2,) = (GRADF(Xs1, ) HsHs + (F4(Xs1,5))GRADH;

(6.7.6)
Moreover, from (6.2.3) and (6.7.5) it also follows that

Rin(Xez,8) = ps(x,5) |detF5(Xs2, )]
= pi(x,s)|detFi(Xs1,3)||det Hg|
= Rwe(Xs1,8) |detHs| (6.7.7)
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and
GRADR, . (Xs2,58) = GRAD(R; . (X1, 8)|detHs) (6.7.8)

We can now substitute (6.7.5)-(6.7.8) into (6.7.2) and dispense with the
explicit notation that Fs and s depend on the reference configuration
X3, and the remaining independent constitutive variables on the position

x. Thus, by letting in (6.7.2) Fj = F4(Xg,s), Ry = %z,,g(Xﬂ,s), and
¢h=¢h(x, s), where ¢ is any tensor-valued function such as f3, we obtain
GauklF},..., F,..., F., GRADF;,..., GRADF,,..., GRADF!,
Tereows Rogerern, Rye, GRADR, ..., GRADR}y,..., GRADR! .,
8, VB, i, Vi, b®, Vi
= Guax[F,..., FiHy,..., F., GRADF!, ...,
(GRADF;)H;H; + F,GRADH;, ...,

GRADF., R ,..., RjcldetHsl,..., R, GRADR;, ...,
GRAD(R.|detHy)), ..., GRADR. ., 85, Vi, 1, Viy, b®* vy

(6.7.9)

In the special case when there is no phase change it can be seen from
(6.2.3) that p,|detF,|=p,k = constant, and by using (6.7.1), (6.7.5), and
(6.7.3) the following result is obtained:

|detFy(Xs1, )| = |detF5(Xsz, s)| = |detFy(Xs1,5)||detHy|
or
detHy = +1 (6.7.10)

which shows that Hj is a unimodular tensor and that, therefore, Hs repre-
sents a unimodular mapping which leaves the constitutive response func-
tional G,x invariant with respect to phase §. With the phase change,
however, the density in the reference configuration need not be preserved

and (6.7.10) need not hold.
We will demonstrate next that the set of pairs (Hs,Js), where

Js = GRADH;
which satisfy (6.7.9) for all
(Fs, GRADFg, Rsk, GRADR s, 65, V85, 15, Vig, b, Vi)
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forms a group. If (Hs,Js) and (Hs,J5) are given pairs, their composition
can be defined as follows (Cross,1973):

(Hg,Jg) o] (}_Ig,jg) = (ﬁg,jg) (6711)

where ‘
H; = H,;H; (6.7.12)
J; = 3,H;H; + HyJs (6.7.13)

so that (6.7.9) is satisfied for the pair (Hjs,J5) whenever it is satisfied by
(Hs,Js) and (Hg,Js). This proof is left to the reader. The pairs (Hs, J5)
have the identity element (Hs = I,J5s = 0) = (I,0), since from (6.7.11)-
(6.7.13)

(1,0) o (Hs,Js) = (Hs,Js) (6.7.14)
(Hs,J5) o (,0) = (Hs, Js) (6.7.15)

The inverse pair (H;',J;') defined by
(Hs,J35)" = (H7',357) (6.7.16)

also belongs to the pairs (Hg,Js), since
(Hs,J5) o (Hs,d5)™" = (Hs,5) o (H;', 357)
— (HH;", LH;"H;' + HyJ;') = (I, 0) (6.7.17)
(Hs,35)7" o (Hs,J5) = (H; ', 35") o (Hs, Js)
= (H;'Hj, J; HeH; + H;'J5) = (I,0) (6.7.18)

where H;! is the inverse of Hg, and J;' is defined from the above equations
as

3;' = —H;'J,H;'H;" (6.7.19)

or
itk = —HijJsemn Hipp s Hon g (6.7.20)
The associativity property of the pairs (H;s,Js), (Hs, J5), and (ﬁg,jg), i.e.

(HE,JE) o ((Eﬂajﬂ) ° (}:{Eaj)) = ((HE,JE) o (ﬁﬂajﬂ)) o (ﬁ5’35)
(6.7.21)
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can be established from (6.7.11) by noting that
J5(HsHs)(HsHs) = (3sHH5)(HsHs)
or |

Js1ix Hs g Hspo Hsu Hsur = Js1ix Hspyr Hscu HsmqHsu L

The identity properties (6.7.14) and (6.7.15), inverse properties (6.7.17)
and (6.7.18), and the associativity property (6.7.21) prove that the pair
(Hjs,Js) does indeed form a group which will be called the isotropy or
symmetry group of the §’th phase and denoted by gxs. Notice that this
group depends on the constitutive relation for G,x, and thus on the refer-
ence configuration for the §’th phase.

As discussed above, the tensor H; need not be unimodular or orthogo-
nal. If Q, an orthogonal tensor, belongs to the isotropy group gks, then its
inverse Q7! = Q7 also belongs to gks, since gxs is a group. By selecting

=t = 3 s
Fy = QF;, Vb, =QVi,, i;=QiQ’,
Vlﬂ = QV1 QTQT, b®) = QberQT Wy =QVvyQTQT
and H; = Q7 in equation (6.7.9), yields:
G.x[QFS,..., QFiQ7,..., QF., QGRADF;,
Q(GRADF; )QTQT .» QGRADF. | ®|,.,. S1r 0 Rges
GRADR.,,..., GRAD%EK,...,GRADﬁgn, oﬂ, qvég, QiLQ7,
QVvizQ"Q", QbrQT, QV»PrQT Q"]
— G.x|QFY, QGRADFY, R, GRADR,, I, QV,,
Qi;Q7,QVitQ"Q", QbP1QT, QV»QTQT] (6.7.22)

Now, if G,k is a vector, use can be made of its restriction imposed by the
principle of material frame-indifference as expressed by (6.6.21). Choosing
in this equation Q'(s)=Q(t), independent of s, gives

G"‘K'[Q(t)F;” Q(t)GRADFtﬂ’ %%Kn GRAD%;?KA gtﬂa Q(t)vatﬂa
QHEQ), Q) ViZQ() Q)

QPQ)", Q) VLl )‘Q(t)TQ(t)T]
= Q(t)G.x[Fh, GRADFY, R,,, GRADRY,,

8g, Vg, 15, Vi, b0, V1) (6.7.23)
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a relation which holds for all orthogonal Q(t), whereas (6.7.22) holds only
for those Q that belong to the isotropy group gxs. Combining these two
relations yields the following result:

G.r[Q(E)F, ..., QB)FiQ()",..., Q(t)F:, Q(¢t)GRADF:,...,
Q(t)(GRADF;)Q(t)"Q(t)", ..., Q(t)GRADF!, R, GRADR},.,
Bs, Q(t)V5, Q)LQ)T, Q)VELQ() Q)
Q()b®1Q(t)", Q) VLA Q(t)TQ(¢)"]
— Q(t)Gax[Fh, GRADFY, RS, GRADR,,, b5,
Vi, it, Viy, b, wu ) (6.7.24)

Notice that (6.7.24) is a sufficient and necessary condition for the orthog-
onal tensor Q(t) to belong to the isotropy group.

The orthogonal tensor or transformation may be proper (with the de-
terminant=+1) or ¢mproper (with the determinant=-1). The set of all
proper and improper orthogonal transformations belong to the orthogo-
nal group Os, and the set of all proper orthogonal transformations forms
a subgroup, whereas the set of improper orthogonal transformations does
not. In the case of no phase change, it is noted above that Hy is unimod-
ular and that it need not be orthogonal. If a material possesses a local
reference configuration ks such that the isotropy group ggs contains the
full orthogonal group Os then such a material is referred as isotropic and
ks an undisturbed state of the material. An isotropic material may be ar-
bitrarily rotated before deformation, heat transfer, and phase change, with
the result that subsequent deformation, heat transfer, and phase change
will not detect or be dependent on this initial rotation. In other words, an
isotropic material has no preferred orientations. An anisotropic material
possesses an isotropy group relative to an undisturbed state which is only
a proper subgroup of the full orthogonal group.

6.8 Reduced Constitutive Equations and Isotropic
Multiphase Mixtures

By definition, all material points or particles of a homogeneous phase must
have the same material symmetry. A phase § will be defined as isotropicif
there is an undisturbed reference configuration s such that the isotropy
group ggs contains the orthogonal group O;

Os C gks (6.8.1)
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If the phase § is isotropic, (6.7.24) holds for all Q(¢) and not just for some
orthogonal Q(t), and our next goal is to seek the form of constitutive rela-
tion (6.6.21) for an isotropic phase § in the mixture. Towards this objective
we will first derive a reduced form of the constitutive relation (6.6.21) where
the occurring functions are not subject to further restrictions, except for

the material symmetry.
We will start by choosing in (6.6.21)

F5(Xg,8) = RY(s)Uj(Xg,5) (6.8.2)
where R'(s) is orthogonal, i.e.
Ri(s)R'(s)T=1, detRi(s)=+1

and called the rotation tensor, whereas Uj(Xg,s) is symmetric and called
the right stretch tensor. For a nonsmgular linear transformation Fg, the
decomposition (6.8.2) is unique and usually referred to as the polar decom-
position theorem of CAUCHY (TRUESDELL & ToOUPIN,1960, section 43 of
the Appendix). Moreover, another form of this theorem is

Fi(Xs,8) = V(Xg,5)R(s) (6.8.3)
where Vj(Xp, s) is the left stretch tensor that is also symmetric. If
UL (X, o) V4(Xgy ) =1
then the local deformation is only a rotation, i.e.
Fy(Xp,8)=R(s)
From (6.8.2) and (6.8.3) it follows that
Fjy(Xg,5) F(Xg,3) = Up(Xs,s)* = C(Xg,5) (6.8.4)

Fj(Xs,8)F5(Xs,8)" = Vh(x,s) = Bj(x, s) (6.8.5)

where C}(Xpg,s) and Bj(x,s) can be called the right and left CAUCHY-
GREEN lensors for phase 3, respectively. Since the calculation of C4 and
Bg follows directly from Fg, their use is more desirable than the use of Ug
and Vg which, in general, can be irrational functions.

Returning to (6.6.21) with the choice for F4(Xg, ) from (6.8.2), Q'(s) =
R(s)T and Q(t)=R(t)7, the following result is obtained:

R(t)GaKr[UE(Xﬂa 3)a GRADU;;(Xﬂ’ 3)a \%;m(xﬂ, 3)a
GRADRf(Xg,5), B(x, 5), R(s)T Vy(x, ), R(s)"T5(x, s)RY(s),
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R'(s)"Vig(x, s)R'(s)R/(s), R*(s) b (x, s)R'(s)R'(s),
RY(s) V(x5 R(s)R(5)]
= GaKr[F;i(Xﬂas)a GRADF;;(X;;,.S), ;iK,(Xﬂas)a GRAD?R;JK,(Xﬂ’s)’

=i

oﬂ(xas)a V;;(X,-S), ZI'E;(X,-S), Vi;i(xas)a b(ﬂ)t(xas)a Vu(ﬂ)t(xas)]
(6.8.6)

This equation shows that if the thermal effects and mixture’s structural
characteristics are absent (V85 =0, i3 =0, Viz =0, b{®) =0, Vv =0)
then: (1) the constitutive functional G,k at time ¢ is affected only by the
present value of the rotation R(¢) and not by the previous history of rota-
tions, and (2) G,k can only depend on one of the strain measures, such as
U4(Xg, s) or C4(Xg, ). Put in different words, G,k at time ¢ arises from
the stretch history Uj(Xg, s) relative to a reference configuration, followed
by a rotation at time ¢. Such a result is important, of course, for the ex-
perimental determination of G,k can be carried out only on the stretch,
temperature, and phase change histories. The presence of temperature gra-
dient and structural properties of the mixture in the constitutive relations
dictate, however, the consideration of the rotation history in the determi-
nation of the constitutive response functional G,x. Since from (6.8.2) and
(6.8.3) Ug=RTVg4R, notice that this substitution into (6.8.6) would not
eliminate the rotation history, even if temperature gradients and mixture’s
structural properties are absent.

Fluids have no preferred reference configurations and the configuration
at the present time may be choosen as a reference configuration. For this
reason, it is useful to explore the properties of (6.8.6) further to determine
just to what extent does the reference placement play a role in determining
the constitutive response functional G, k.

Consider the motion of a particle of phase 8 at two different times, ¢
and 7, i.e.

X= Xﬂ(Xﬂ,t) (687)

¢ =xs(Xp,7) (6.8.8)
where x is the place occupied by the particle at time ¢t and ¢ is the place
occupied at time 7. Thus

¢ = xp(X5'(x,t),7) = xgu(%,7) (6.8.9)
where the function x4, is called the relative placement (TRUESDELL,1977)
of particle 8. Using (2.4.5) and the above equations, yields

9¢ _ Oxpui 0z

Fﬂil(xﬂ’T) = aXﬂI - BZJ' aXﬂI

= Fpuij(x,7) Fp;1(Xg,1)
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or
Fs(Xs,7) = Fau(x,7) Fa(X3,t) (6.8.10)
where
Fau(x,7) = Vxa, (6.8.11)

is the local relative deformation.
From (6.8.10) and (6.8.2) we have

Fs(Xgs,7) = Re(1)Upi(Xg, T)R(t) Up(Xs, ) (6.8.12)
Fo(Xs,7) = Ru(r)R()(R() Usd(Xo, IR Us(X,t)  (68.13)
Putting 7=¢ — s in (6.8.13) gives
FY(Xa,5) = RY(s)REIR()TUS (X, ) R()Up(Xsrt)  (6.8.14)
and if we select
Q'(s) = R(t)R,(s) = (Ry(s)R(2))" (6.8.15)
equation (6.8.14) is reduced to the form
Q'(s)F5(Xp,5) = R(t) Upy(Xg, s)R(t)Us(Xg,t) (6.8.16)

which will be used shortly.
The equivalent form of equation (6.6.21) satisfying the principle of the
material frame-indifference is

Gar[Fy(Xs,5), GRADF,(Xg,3), Ri(Xs,5), GRADRS . (Xs,5),
5;():,3), V;;(x,s), i;,(x,s), Vi;,(x,s), b®(x, s), VB (x, s)]
= Q(t)"Gar[Q'(s)Fj(Xs,5), Q'(s)GRADFY(Xy,s), Ry (Xs,5),
GRADRY,(Xg,5), B5(x, ), Q'(s)VEs(x,5), Q'(s)is(x,5)Q(s)",
Q'(s)Viy(x,5)Q'(s)"Q'(s)", Q'(s)b®)(x,5)Q!(s)",
Q'(s)Vr¥(x,5)Q'(s)" Q!(s)"] (6.8.17)
Using now in this equation (6.8.15) and (6.8.16) yields
Gar[F5(Xs,5), GRADFY(X5,5), Ry (Xg,s), GRADR,,(Xp, 5),
6s(x,5), Vi4(x,s), i5(x,9), Viy(x,s), b@¥(x,s), Vv ®(x,s)]
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= R(t)Gar[R(t) Up(Xs, )R (t)Up(X, ),
GRAD(R(t) Up, (X, s)R(£)Us(Xs,t)), Rin(Xs, 5), GRADRG, (X, 5),
Gﬂ(x s), R()R! (s)VGﬂ(x s), R(t)R! (s)lﬂ(x s)R{(s)R(¢),
R(t)R} (s)Vlﬂ(x s)R{(s)R()RI(s)R(t), R(t)Ri(s)bP)(x, s)RY(s)R(2),
R(t)R:(s) VL) (x, s)RE(s)R(t)RE(s)R(E)]

(6.8.18)

where use is made of the fact that Q(¢) = (R(0)R(¢))? = R(t)?, which
follows from (6.8.15) at s=0. The result (6.8.18) implies that

an[Fﬂ(Xﬂas)a GRADF, (Xﬂas)a g'}ﬂﬁ,()(ﬂas)a GRAD%ﬂK,(Xﬂas)’
Gﬂ(x,s), VGﬂ(x,s), 1ﬂ(x,s), Vlﬂ(x,s), bP(x,s), Vvl(x,s)]
= R(t)Gar[R(t) Up,(Xs, s)R(t), Up(Xs, 1),
GRAD(R(t)TUZJt(Xﬂa3)R(t))’ GRADUﬂ(Xﬂ’t)a t (Xﬂas)a
GRADR} . (X5,s), Gﬂ(x s), R(t)R! (s)VGﬂ(x s),
R(t)Ri(s)i5(x,s)Ri(s)R(t), R(t)R!(s)Vis(x, s)Ri(s)R(t)RL(s)R(2),
R(t)RY(s)bP(x, s)R!(s)R(t), R(t)RL(s) VP (x, s)RY(s)R ()R (s)R(2)]

(6.8.19)

or in terms of the right CAUCHY-GREEN tensor Cg defined by (6.8.4), this
result can also be written as
Gan[F_f,(Xﬂ,s), GRADF;,(Xﬂ,s), %gn(Xﬂ,s), GRAD\?Rfm(Xﬂ,s),
Bs(x,3), VB4(x,3), (x,3), Viy(x,s), b@(x,s), Vv ®)(x,s)]
= R(t)Gar[R(t)" Ch,(Xs, s)R(t), Cs(Xg,t),
GRAD(R(t)T C4,(Xs,5)R(t)), GRADC4(Xg,t), Ryx(Xs,3),
GRADRY (X3, 3), 85(%,3), R()RY(s)VB5(x,3),
R(¢)R} (s)lﬂ(x s)R;(s)R(t), R(¢)R} (s)Vlﬂ(x s)R;(s)R(¢)Ri(s)R(2),
R(t)R{(s)bP(x, s)RY(s)R(t), R(¢)RL(s)VrP(x, s)R!(s)R(¢)RE(s)R(2)]

(6.8.20)

Equation (6.8.19) or (6.8.20) shows that it is not possible to express the
effect of deformation, phase change, temperature, and structural properties



6.8 REDUCED CONSTITUTIVE EQUATIONS AND ISOTROPIC MIXTURES 109

of the mixture entirely by the present state of the mixture and that a fixed
reference placement is required, in general.

For a multiphase mixture with all phases isotropic, equation (6.8.20) can
be reduced further by taking in this equation F4(Xg, s)=F4(Xg, s)R(s)”
without changing the value of Gk, since isotropic materials have proper-
ties independent of direction. Thus, with the aid of (6.8.2) we have

F4(Xp,3) = F4(X;g,5)R(t)T = Ri(s)U4(Xp,5)R(s)”  (6.8.21)

showing that F4(X3, s) is positive and symmetric. By the polar decomposi-
tion theorem it follows then that R'(s) can be replaced by I, and Uj(Xg, s)
by R¥(s)U4(Xp,s)R!(s)". Moreover, R(¢)"CY,(X;,s)R(t) is now replaced
by C%,(Xgs,s), and Cg(Xg,t) is replaced by R(t)Cs(Xs,t)R(¢)”, which
upon combining (6.8.2)-(6.8.5) is Bg(x,t), i.e.
R(t)Cs(Xp,t)R(t)" = R(t)Fs(Xs,t) Fo(Xp,¢)R(t)"
= R(t)R(t)" Vi (x,t)Vs(x,t)R(E)R(t)" = Vp(x,t)* = Bg(x, )
(6.8.22)
Thus, for an isotropic mizture (6.8.20) is reduced to the following form:
GaKr[F;i(Xﬂas)’ GRADF;;(X;;,.S), ;iK,(Xﬂas)a GRAD%ZJK,(Xﬂ’s),
03(x,3), Vhy(x,s), B(x,4), Vig(x,s), bO(x,s), Vui(x,s)
= GaKr[C;it(Xﬂas), Bﬂ(x’t)a GRADC;%(Xﬂ’s), VBﬂ(xat)a
‘%;m(xﬂ,s), GRAD?R;JK,(Xﬂas), 5;(?5,3), V;;(x,s), i;i(xas),
V.i';;(x,s), b (x,s), VvP(x, s)| (6.8.23)
where the effect of rotation has been suppressed.
The transformation properties of (6.8.23) under the principle of the

material frame-indifference can be determined by using (6.7.24) with all
phases isotropic. In (6.8.23) we can therefore replace:

Fiy(Xp,5) by Q(t)F4(Xs,5)Q(t)T
GRADF)(Xs,s) by Q(t)(GRADF(Xs,5))Q(t)"Q(t)"
Vig(x,5) by Q(t)V5(x,s)

i5(x,5) by Q()ih(x,8)Q(t)"
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Vig(x,s) by Q(t)Vis(x,s)Q(t)"Q(t)"
b®(x,s) by Q(t)bP(x,s)Q(t)”

VuPli(x,s) by Q(t)Ve ¥4 (x,s)Q(t)"Q(t)"
and T,(x,t) by To(x,t)if this is a scalar, by Q(¢)Y,(x,¢) if this is a vector,
and by Q(t)Ta(x,t)Q(¢)7 if this is a second order tensor. Using (6.8.5),
Bjs(x,t) and VBg(x,t) are replaced by the following relations:
Bo(x,t) = QU)Fs(Xs, Q) (QU)Fs(X5, Q)"
= QU)Fs(Xs, )F(Xs,6)7 Q1) = Qe)Ba(x, Q)T (6.8.24)
VBg(x,t) = Q(t)VBs(x,1)Q(¢) Q(¢)" (6.8.25)
Using now (6.8.10) in (6.8.4) results in
Cs(Xp,7) = Fs(Xp,7) Fp(Xg,7)
= (Fau(x,7)Fs(Xp,t)) Far(x, 7)Fs(Xp,t)
Fy(Xs,t)" Cp(Xp, 7)F(Xp,t) (6.8.26)

from where
Cpi(Xg,7) = (Fs(Xp,t)") ' F(Xg,7) F(Xg, 7)F5(Xg, )" (6.8.27)

Upon taking in this equation 7 =t — s and using the above-mentioned
substitution for

Fj(Xg,9) = Q(t)F5(X,,5)Q(t)"
it follows that Cj,(Xg,s) in (6.8.23) is replaced by Q(t)C4(X3,5)Q(),
and GRADC},(Xg, s) by
Q(t)(GRADC,(Xs,5))Q(t) Q(t)"
Equation (6.8.23) is thus reduced to
Garc[Q(H)Ch(Xs,9)Q(E)", Q(£)Bs(x,£)Q(H)",
Q(t)(GRADC},(X4,9)Q(H) Q(2)", Q(1)VBs(x,t)Q(t)"Q(t),
R (Xg,8), GRADR, . (Xg,9), B5(x,5), Q(t)VEs(x,s),
Q)i5(x,9)Q()", Q) Vij(x,5)Q(H) Q(H)T,
Q)b (x,5)Q(t)", Q()VrP(x,5)Q()" Q(¢)"]
= Q(t)Gak[Chi(Xs, ), Ba(x,1), G'RADCf;t(Xﬂ,s), VBgs(x,t),
R0 (Xs,8), GRADRY (X3, 3), B5(%,3), Vis(x,3), i5(x,3),
Vih(x,s), b®(x,s), VvPi(x,s)] (6.8.28)
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This equation represents a combined result of the principle of local action,
material frame-indifference, and material symmetry, satisfying the isotrop-
icity requirement of each phase in the mizture.

6.9 Solidlike and Fluidlike Mixtures

The physical behavior of “solids” is different from “fluids” in that solids
have preferred configurations and their thermomechanical response is dif-
ferent from different configurations. This difference forms a basis for cate-
gorizing solidlike and fluidlike multiphase mixtures.

6.9.1 Solidlike Mixtures

A phase § can be said to be solidlike if there exists a reference configuration
ks such that the isotropy group gks=(Hs,J5) = (Hs, GRADHj) is a linear
group (Hs, O) and a subgroup of the orthogonal group Os. Formally,

grs = (H5,0) — grs=Hs C 05 (6.9.1)

where the reference configurations with this property are called the undis-
turbed states of the solid. If the phase é possesses a reference configuration
ks such that the isotropy group gks is a proper subgroup of the full orthog-
onal group Oy then such a material can be categorized as being anisotropic
or aelotropic. The isotropy group of the solid may be any subgroup of
the orthogonal group that contains the inversion transformation —I and
it can be, therefore, generated by —I and a subgroup of rotations gres
(consisting of proper orthogonal transformations). TRUESDELL & NOLL
(1965) in section 33 of their treatise discuss 11 such rotation groups cor-
responding to 32 crystal classes. Here it is only noted that the transverse
18otropy is characterized by a group of material symmetries generated by
grrs 1n an undistorted material state for which any rotations about an
axis for a given direction is a symmetry operation (the materials with the
laminated structure). Materials with ggs consisting of only I and —1I are
solids corresponding to the triclinic system, whereas an orthotropic solid is
characterized by an isotropy group containing reflections on three mutually
perpendicular planes.

A material that is both solidlike and isotropic is referred as an isotropic
solid. In this situation the phase § must possess a local reference config-
uration such that its linear isotropy group coincides with the orthogonal
group, t.e.

grs = (Hs,0) = Os (6.9.2)
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with Hs an arbitrary orthogonal transformation. If, moreover, phase §
cannot undergo a phase change, then Hy is unimodular as demonstrated
in section 7 by (6.7.10).

To determine the constitutive response functional G,k for isotropic
solid phases, it is necessary to examine the combined effects of material
symmetry and the requirement (6.9.2) imposed on this functional. For
this purpose, we can start from (6.7.9) by choosing a necessary condition
H; =R!(s)" =R’ and using (6.8.3) and (6.8.5) with 8=46. For the §’th
phase in (6.7.9) we thus have

FiH; = VIR'R'T = V¢ = (BL)!/? (6.9.3)
and
(GRADF)H;H; + F\GRADH; = (GRADV:RHR'R  (6.9.4)
which in component notation is written as

Bzzi 62
aX6LaX5MRtLTI;R§\:;q - 0Xs.0Xs [(FEtLJ) 1V6]lc(F6tMt) 1V6£q
6231 BXEL BXEM

8Xs.0Xsy Oz; Oz, SF %

(6.9.5)

since F = VIR and (R!)™! = R*T = (F{)"!V}. Using now (6.8.5) it is
possible to show that (6.9.5) can be transformed into the following form:

¢ \~1
(6.9.6)
Moreover,
|detHs| = |detR!T| =1 (6.9.7)

Equations (6.9.3)-(6.9.7) illustrate that a function of
FH;, (GRADF.)H,H; + F.GRADH;, detH;

can be replaced by one of B and VB;. Consequently, for the §’th phase to
be an isotropic solid the constitutive response functional (6.7.9) becomes

Ta(%,t) = Gar[F%,..., B,..., F\, GRADF!,..., VB,
GRADF!, R%.., GRADRY,, 85, Vi, 1, Viy, @), w6 (6.9.8)
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where for each @, a=1,...,7, 8 ranges from 1 to 4. Combining this result
with the restriction imposed by the principle of material frame-indifference
as expressed by (6.7.23) yields a condition on the functional Gk With §’th
phase being an isotropic solid. Thus, with T,(x,t) a vector it follows that

GarQ(OF, ..., Q)BLQ(t),..., Q(t)F:, Q(t)GRADFY, ...,
Q(t)VBLQ(t)"Q(t)",..., Q(t)GRADF!, R}, GRADR,,
3, Q(t)VE,, Q(1)Q(E)T, Q)VILQ(H)TQ()T,

Q()bP'Q(e)", Q1) VP Q() Q)]
= Q(t)GaxlF,..., BS,..., F', GRADF',..., VB},..., GRADF',

R, GRADRY,, 85, Vg, 14, Vi, bO, V)] (6.9.9)

When all phases in a mixture are isotropic solids, it is necessary to re-
place in the above equation Q(t)F!, € # §, by Q(¢)B!Q(¢)?, F! by B!,
Q(t)GRADF! by Q(t)VB.Q(t)TQ(t)?, and GRADF: by VB!. In this
situation the result becomes equivalent to (6.8.28), since for isotropic ma-

terials a function of BY4(x,s) and VBj(x,s) can be replaced by the one
of

C;it(xﬂas)a Bﬂ(x’t)a GRADC;”(X[;,.S), VBﬂ(xat)
The proof of this assertion follows from (6.8.27) and (6.8.5), since

Cﬂt(Xﬂ’ T)
= Ba(x,t) " Fs(Xp,t)Fs(Xp, ) Fa(Xs,7)Fs(Xp,t) B(x,t) "
(6.9.10)

and for isotropic materials a necessary condition for the deformation gra-
dient is that

Fﬂ(Xﬂ,T) = Vﬂ(Xﬂ,T)R(t) (6911)

where R(t) is the history-independent rotation tensor. Upon substitution
of this equation into (6.9.10) gives

Cpu(Xp,7) = (Va(Xg,t)") ' V(Xp,7) V(Xp,7)V5(Xp,2) Bs(x,t)

(6.9.12)

which when using (6.8.5) and putting 7=t — s proves the assertion.
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6.9.2 Fluidlike Mixtures

When phase change occurs for the §’th phase, detHy # 1 necessarily, and
H; is not a unimodular tensor. Following CROSS (1973), we will define the
8’th phase to be a fluid with phase change whenever the following condition
is satisfied:

(Hg,Jg) C gks (6913)

that is, the group element (Hs,J;) belongs to the isotropy group grs. As
a necessary condition we can take (Hs,Js5)=((Fi)~!, GRAD(F%)™!) from
where it follows that

FLH: = FL(F%) ! = (6.9.14)

(GRADF:)(FL) ™ (F%)! +F‘V(F ) 1 (6.9.15)

The last result is proved by using the fact that Fi(F:)~! = I. Moreover,
upon using (6.2.3) and (6.9.14) we obtain

Ri,|detHs| = p;|detF||detHs| = p;|detF;Hs| = (6.9.16)
and
GRAD(R}y |detH;|) = V p; (6.9.17)
These results show that for a fluid phase §, a function of
F;H;, (G’RADF YH;H;s + F\GRADH;, R, |detH;s|, GRAD(R;, |detH,|)

can be replaced by one of (55, V}), thereby reducing (6.7.9) to the follow-
ing form:
Yo(x,t) = Gar[Ft,..., Fs_y, Fioy,..., F\, GRADF,.. .,
GRADF,_,, GRADF;_,,... G’RADF’ ooy Ro_1kes Pos
g'}6+1Kn ‘%Eyn,, GRAD%U{,’ GRAD%E 1K) VPE,

GRADR, .,..., GRADR®! ., oﬂ, voﬂ, iy, Viy, b vy Bl
(6.9.18)

where, as before, for each @, a = 1,...,7, B ranges from 1 to 4. This
result is a necessary consequence of the material symmetry requirement
for the §’th phase to be a fluid, and when it is combined with (6.7.23), a
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combined restriction of material symmetry and principle of material frame-
indifference is obtained. Hence,

Gar[Q(H)FS, ..., Q(E)F5_, Q(t)F5yy, ..., Q(H)F,, Q(t)GRADF,
Q(t)GRADF._,, Q(t)GRADF:,,,..., Q(t)\GRADF., R.,,...,
RE s Bhr Repaprerer Ry, GRADR: ..., GRADR, .,
Q(t)V3,, GRADRY,,..., GRADR. i, B, Q(t)V5, Q(1)4Q()",
Q(HVizQ) Q) Q(t)b(")‘Q(t)T, Q)VvPrQ(1) Q(t)"]
= Q(t)GaklF,..., Fiy, Fi,,,..., F!, GRADF,,. ..,
GRADF. ,, GRADF.,,,..., GRADF', ®,,..., R_, ., 7L,
R, imre-r R, GRADR ..., GRADR: e, V5,
GRADR.,, c,-.., GRADR. .., B, Vi, i, Vi,, b, vy

(6.9.19)

When all phases in the mixture are fluids, it is necessary to put in the
above equation Fy =0, R, = p;, GRADR},, = Vpj, for B=1,...,6 —
1,6 +1,...,7 and let § range from 1 to 4.

For a multiphase mixture with the 8’th phase a fluid, the constitutive
relation (6.8.28) cannot depend on Bg(x,t) and VBg(x,t), but on ga(x,t)
and Vpgg(x,t). This proof is left to the reader.

6.9.3 Mixtures of Isotropic Solids and Fluids

For a mixture consisting of isotropic solids and fluids, the results of sections
6.9.1 and 6.9.2 can be combined. Thus, for a multiphase mizture consisting
of M isotropic solid phases and v — M fluid phases, the combination of
(6.9.9) and (6.9.19) gives the following form of the constitutive response
functional:

Gar[Q()BIQ()",- .., Q(t)BLQ®)", Phryrs---» P
Q()VBIQ() Q)" ..., Q(t)VB Q)" Q)"
Q(t)va+la ‘) Q(t)Vﬁ;, %ih‘,a"'a MK,’ GRAD%%K,""’
GRADR?\/IK,’ 5:% Q(t)vé-;a Q(t)i;;Q(t)T,
QU VEQ()TQ), QEIBPPQ(E)T, Q) VA Q)T Q(t)]
= Q(t)GaKr[Bt Bﬁ\/[, ﬁ5\/1+1, * p»ya VBia VBg\/[a
V'PM+1, Py, ‘%im .3 ﬁ\/lm GRAD‘%in,--w GRAD‘%R«IK,,
0ﬂ, voﬂ, iy, Viy, b w0 (6.9.20)
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where for each a, a = 1,...,v, the range of 3 is from 1 to v, and the
notation of ¢} = ¢s(x,t — s) is used for the independent variables ¢.

6.10 Combined Principles of Local Action and
Smooth and Local Memory for a Mixture
of Isotropic Solids and Fluids

In section (6.5) we discussed the combination of constitutive relations
(6.3.8) and (6.4.6) expressing the combined effect of the principles of local
action and smooth and local memory. This result, expressed by (6.5.1),
may be reduced further by invoking the additional principle of the ma-
terial frame-indifference and isotropicity assumption on solid and fluid
phases. Towards this objective, the starfing point can be choosen more
conveniently as equation (6.6.28) satisfying the combined principles of lo-
cal action, smooth and local memory, and material frame-indifference. For
M isotropic solids, we can simply put in (6.9.9) s = 0 and use the re-
sult to replace in (6.6.28): (1) QF,; by QB;zQ7, and (2) QGRADF; by
QVBsQTQT. In a similar manner, use can be made of (6.6.19) with s=0
and 4 — M fluids to replace in (6.6.28): (1) QF,; and R, by gg, and (2)
QGRADFg and GRADRgx by Vpg. The result is then given by

GaKr[QquTa"'a QBMQTa QVquTQTa'“a QVB]WQTQTa %Uﬁa"'a
Ry, GRADRk,..., GRADRMK, PM+1s--+y Pys ARV PrMy1,..., QV Dy,
QDM+1QTa cey QDﬁqTa Q(WM+1 - Wﬁ)QT, ceey Q(W7—1 - W7)QTa
§'}Ufra"'a §j?'MKA 5M+1a"" ﬁy’ 51,"% aya 01,"'a g'ya Qvgla"'a
QVé—‘Ya Q({’l - {"y)" ‘< Q({"y—l - {"y)a Q(il - Wlil - ilW;F)QTa tery
Qi, - w,i, —L,wi)Q’, qQiQ",..., QL,Q", QViQ'Q’,. ..,
QVL,Q"Q", QbQ7,..., QbMQT, QV»IQTQT,..., QV¥QTQY]
— QG.x[B:,..., By, VB,,..., VB, Rix, ..., R, GRADRik, ...,
GRAD%MKM PM41seees Pvs VI—’M+1,---, Vﬁ7, DI\’[+1a"'a D‘Y’

1

Wi —W,,..., W, - W,, Rik,..., vk, PM41s-+vs Pys

51,..., 5‘7, 51,..., 5—7, Vé_l,.-., Va,, \?1—{’7,..., {’7_1—{’7,
Wi LWL - Wi, LW, L,
Vii,eery Vig,..., b b0 w0 W 0)]
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(6.10.1)

where Q = Q(¢), R = R (Xs,t), and all other independent variables
depend explicitly on (x,t). Notice that this result contains a number of
important assumptions which can significantly limit the usefulness of the
constitutive equations.

6.11 The Role of Entropy Inequality or Axiom
of Dissipation in the Constitutive Theory

The exact role of the entropy inequality in the constitutive theory of mul-
tiphase mixtures is a matter of some controversy. As discussed in section
2.5, the derivation of the multiphase mixture field equations using the av-
eraging approach leads naturally to an entropy inequality for each phase,
as long as it is assumed that the local axiom of dissipation or entropy in-
equality within each sub-body é of phase a is assumed valid, as common
in modeling the single phase continua. In the postulatory theories of mul-
tiphase mixtures, however, only a global axiom of dissipation or entropy
inequality for the mizture as a whole is postulated, as common in modeling
the single phase multicomponent mixtures (BOWEN,1976).

The role of entropy inequality in the constitutive theory is to restrict
the forms of constitutive assumptions. That is, a thermodynamic process
that is compatible with an entropy inequality is called an admissible ther-
modynamic process and the inequality can be used to place restrictions on
the constitutive response functionals. The resulting constitutive equations
will thus depend not only on other principles of the constitutive theory
as discussed in previous sections, but also on whether or not use is made
of the mixture or phasic entropy inequality to restrict the forms of the
constitutive equations. In the studies of constitutive equations in the fol-
lowing chapters, use will be made of the phasic axiom of dissipation (2.4.45)
rather than of the mixture as a whole (equation (2.4.50)) for the reasons
as discussed above and in chapter 2.

6.12 Internal Constraints

6.12.1 General Considerations

The internal constraints of a multiphase mixture are a priors assigned con-
ditions or constitutive relations of material deformation, energy transfer,
or phase change. As such, these constraints require a modification of the
principle of determinism discussed at the beginning of the chapter. Con-
strained multiphase mixtures are more easily modeled than unconstrained
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mixtures, since one or more phases in the mixture may be incompress-
ible, not undergoing a phase change, or the mixture as a whole may be
saturated. The saturation condition refers to the distribution of phasic
volumetric fractions ¢, in a mixture which, in general, satisfy the follow-
ing inequality:

v=Y¢a<l, ¢o= %ﬁ (6.12.1)

expressing the notion that a mixture may also consist of voids, as physically
possible, for example, in granular mixtures. When in (6.12.1) the equality
sign prevails, the mixture is called saturated; otherwise it is an unsaturated
mixture.

Being a prior: constitutive relations, the internal constraints must be
maintained by mechanical, thermal, chemical, and other forces of the mix-
ture, and cannot be determined by the history of the thermokinetic process.
The principle of determinism discussed in section 6.2 should be, therefore,
revised such that the constitutive relations (6.2.5) account for any possible
a priori restriction on the material behavior due to mechanical, thermal,
or other forces in the mixture. Formally, we may express this requirement
by the following expression:

To=Ta+ 7T, (6.12.2)

where T are the internal constraint relations, whereas T, are the constitu-
tive relations (6.2.5) which are determined by the history of the thermoki-
netic process (6.2.6). Depending on the nature of internal constraints it
should be clear from (6.12.2) and the above discussion that many T, will,
in general, be equal to zero.

From the definition of internal constraints, it may be argued that they
cannot produce any energy or entropy dissipation. If they did, they would
violate the original premise that internal constraints are maintained by
forces which are independent of the history of the thermokinetic process.
TRUESDELL & NOLL (1965) point out that constraints are maintained
by reaction forces and that there are possibly infinitely many systems of
reaction forces which suffice to maintain a given constraint. They also
assert that the simplest forces are the ones which do no work. For a
multiphase mixture, a great care is needed in asserting that the internal
constarints produce no work or entropy generation, since the following
problems need to be reconciled:

e Does the no work production imply or is implied by the no entropy
production?
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o Does the assertion pertain to each phase or to the mixture as a whole?

Before returning to the discussion concerned with the possible resolution
of these questions, it will prove useful to summarize the past works on
internal constraints.

6.12.2 Previous Works

GURTIN & GUIDUGLI (1973) developed a thermodynamic theory of con-
straints for single phase materials where the internal constraints do not
produce entropy. With this assumption in view, NUNZIATO & WALSH
(1980) developed constitutive equations for multiphase mixtures by utiliz-
ing the field equations of PASSMAN (1977) and used the entropy inequality
for the mixture as a whole to include within it the “no-entropy production
constraint”

AY ¢ =0 (6.12.3)

with A being the Lagrange multiplier corresponding to the saturation con-
straint v = 1. PASSMAN et al. (1984) criticized the use of the above
constraint in an entropy inequality on the basis that it may lead to the
nonvanishing of the momentum source (5.4.9) when each phase possesses
a different temperature, and, instead, they used the assumption of work-
less constraints. In particular, when treating the saturation constraint on
phase a, PASSMAN and co-workers introduced the reaction force 7 for this

constraint and let the power expended per unit volume of phase a be given
by

W,== (a;ia) = qS(an —Vo:Vy) (6.12.4)
X

so that if this is added to the energy source &, in (5.4.6) and summed over
all phases in the mixture as in (5.4.13), then there would be no net power
expended for the mizture as a whole. The reaction force = in (6.12.4)
is identified as the interfacial pressure and argued that such a quantity
also appears in the works of IsHII (1975) (who used the time averaging
approach to derive the field equations) and BEDFORD & DRUMHELLER
(1978). This argument does not, of course, prove that 7 is indeed the
interfacial pressure, since the interphase pressure is the pressure between
two phases of the mizture which by the above definition all such pressures
in a mixture with three or more phases should be identical and equal to =
- a condition that is clearly too restrictive and superficial.
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PASSMAN et al. (1984) also discuss the handling of the incompressiblity
constraint within their theory of mixtures. To illustrate the approach, we
first note that

Pa = dapq ' (6.12.5)

which follows from (2.3.7), where p, is the (true) mass density of phase
a and assumed to be constant, since the phase a is, by definition, incom-
pressible. Using this equation, it follows from (2.4.14) that

A
Ca

b + $a Vg == (6.12.6)
from where it is argued that the work expended per unit volume due to
the incompressibility constraint is

W = pa(da + 6oV Vs — == (6.12.7)
In this expression p, 1s the reaction stress associated with the constraint
and identified as the hydrostatic pressure. Since W, =0 in (6.12.7), the
condition that the incompressibility constraint produces no work for the
mixture as a whole is again satisfied as for the saturation constraint dis-
cussed above. But the question is: why is the power expended of phase a
by the saturation constraint (6.12.4) different from zero, whereas that due
to the incompressibility constraint (6.12.7) it is identically equal to zero? Is
it because the saturation constraint applies to the mixture as a whole and
hence no net power can be expended in the mixture as a whole, whereas the
incompressibility constraint applies to a phase and, consequently, it cannot
produce any power expenditure for that particular phase. If the answer
to this is affirmative then we have an internal constraint rule; otherwise
we have an artifact in the theory that may reside in the field equations or
constitutive principles.

6.12.3 Restrictions Imposed on Internal Constraints Relations
by No Entropy and Work Production Principles

The handling of internal constraints within the theory of multiphase mix-
tures is an unsolved problem. Towards the resolution of this problem it is
useful to derive a set of conditions which the internal constraints should
satisfy in the situations when they do not produce entropy, work, and both
entropy and work for each phase in the mixture.

Starting from the phasic entropy inequality (2.4.45) it is possible to elim-
inate g,7, by using the energy equation (2.4.35) in which €, is found from
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(3.4.17) and (3.4.15), po; from (3.3.3), and I,imn from (4.3.47). Carrying
out these substitutions and using the definition of the Helmholtz potential

¢~a = €4 — aaga (6.12.8)
the inequality (2.4.45) is reduced to the following form:
by L 1 = - - . N - ',:
_pa(gaaa + ’¢’a) - ?'(_Ia'voa + 3aoa + Taijvai,j + Ca(—’l/’a + Ea)

[0 4

_q.sa +v m (SamJ + Pa am]) va] ) J(m) 1(:)pazamq
__pa(V(a) (a)~amq) + ca 1(m) ,q )(zamq :;amq)

+(V(G)Aamji - z(r(:l)palfam - —( (a) (Ot z(la)Uamﬂl)) 2 0 (6'12'9)

Jm ]ﬂ

For each of the constitutive variables

Ta = Ta[';a, ¢a, (_Iaa 3(1) Ta, Aa’ Ca, Sa’ la’ Ea’ qsa, ‘CEG’ Ua]

in the above inequality, use is now made of (6.12.2) with the calorodynamic
variables T, satisfying (6.12.9) and the internal constraint variables T,
requiring not to produce entropy, t.e.

—Pa(Bufa +%a) — =@ Vo + 800 + Ty B + En(~Po + &)

qsa + (CG + ca)( ¢ + Ea) - (Vz(:l)pa‘eﬁam) + V(a)SamJ

« 1 (] a %
+( J(m)Aasz) 2( J(m) ](ﬂ) z(a)Uamna)

1
+2(
But, by the definition, the internal constraint relations cannot depend on

the thermokinetic process and, consequently, it follows from the above
equation that

" 1.
o+ &, )V,m ,(q) + e )y )(zamq zamq) =0 (6.12.10)

amgq 9 o tm Vg

& =0 (6.12.11)

o+ =0, inmo=0 (6.12.12)
if o #0, for otherwise the condition (6.12.12) need not be satisfied. Equa-
tion (6.12.10) is, therefore, reduced to the following form:

pa(s a— + ’¢’ ) — 0_ qa-Vaa + 3:;50 + Ta”vaz,] (Vzm pa am)vi



122 CONCEPTS OF THE CONSTITUTIVE THEORY

AR - ( (@), @), @)

]m am]z ]m ]ﬂ a amna) = 0

-I-u(a)S

amj

(6.12.13)

which together with equations (6.12.11) and (6.12.12) form sufficient and
necessary conditions for the internal constraints

é’(;’ '(,b;, Ea’ 3(1’ qa’ ":” T Aa’ qsa’ ‘tﬁa’ ’(;’ i:n U:‘t

not to produce entropy in any phase of the mixture.

Before discussing the above results, we will determine the requirements
imposed on the internal constraint relations when they are not allowed to
produce any work. These results follow from the energy equation (2.4.35)
with the above-mentioned substitutions for €,, pai, and Iyimn, i€

pa‘ga = —V‘(—la + pa';'a + Taiji;aij - éa(éa - éa) q’“
+V.§$n)(samj + Pa amJ) Vaj, 1( (o) ( )pa"amq) - pa("z(:l) 1(;1);0'"‘1)

a 1 o) (a
+( ( )Aamji - ,(m)palfam - ( o) ( )V( )Uamnl),i

2]"1 ]ﬂ

1 (] (] .
+ 2Cal/,(m) 1(q )(zamq zamq) (6-1214)
Following the same procedure as in the derivation of the sufficient and
necessary conditions for internal constraints not to produce entropy in the
entropy inequality (6.12.9), we may also obtain the sufficient and necessary
conditions for internal constraint relations

ca’ Ea’ (s3] a’ qa’ a? T Aa’ qsa’ ‘tﬁa’ Sa’ la’ Ua

m>>_

not to produce the work from (6.12.14). The results are:
& =0 (6.12.15)

—& +é,=0, i,.=0 (6.12.16)

—pat, — Vg + Ta,Jva,,, G+ 5+ D R) s
(Vl(m)pa~ ) ( }?n) }z) 1(((11)Uamna) - 0 (612‘17)

where the condition (6.12.16) is not required if ¢, =0.
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The sufficient and necessary conditions for internal constraints relations
not to produce entropy and work are obtained by combining (6.12.11)-
(6.12.13) and (6.12.15)-(6.12.17). These conditions consist of the no-work-
production relations expressed by (6.12.15)-(6.12.17) and the following ad-
ditional requirements:

5,=0 (if és #0) (6.12.18)

n

+ V. ( 2)+35, =0 (6.12.19)

a

6.12.4 Special Results

The above results demonstrate that the constraints which do not produce
work are, in general, different from the constraints which do not produce
entropy, even in the absence of the internal constraints on S, Aa,

£e., and U,. With the latter constraints absent, the entropy condltlons
(6.12.11)-(6.12.13) give

a’

& =0, —g.+i =0 (ifé #0) (6.12.20)
"= L7 1 = = ”
—Pal3.00 + o) — é_ AoV 0o + 8,80 + Ty jVaij — Goe = 0 (6.12.21)

whereas the energy conditions (6.12.15)-(6.12.17) are reduced to the form

& =0, —E+& =0 (if& #0) (6.12.22)

Bty — V& + T inij — Gon = 0 (6.12.23)

For a single phase mixture, the entropy condition (6.12.21) is further re-
duced to

\ ” "

B30, + o) — = 8o VOa + Ty 0ij = 0 (6.12.24)

s=="| ~

which upon setting 1‘;0 =0 is reduced to the result of GURTIN & GUIDUGLI
(1973) discussed above. For single phase simple materials exhibiting only
mechanical effects, it follows from (6.12.21) and (6.12.23) that

_Pa’l,b + az]val,J - 0 (6.12.25)
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”
—x1)

&+ T i = 0 (6.12.26)

atj

These results are in accord with those of TRUESDELL & NOLL (1965) when

"
p ”

¥, =¢€,=0, since for T, symmetric they can be written as

tr(T,D,) =0 (6.12.27)
Choosing
T, = ~pal (6.12.28)
it then follows that
trDy = Veiy = 0 (6.12.29)

which is the required form of single phase continuity equation for incom-
pressible flow. The constitutive equation for the stress tensor has then the
following form:

To=—pI+7 (6.12.30)

where the stress T is determined by the thermokinetic process through the
constitutive equation.

6.12.5 Discussion

The theory of multiphase mixtures which is simplified by the constitutive
asumption (5.1. 1) does not appear to recover the incompressibility con-
straint (6.12.7) in (6.12. 11) (6.12.13) or (6.12.15)-(6.12.17). This may be
seen from (6.12.17) when €, =g, =£¢,,, =Upnna =0, i.c.

T Paig — Qoo + V32 S + (Vi M) = 0 (6.12.31)

In the above equation, the intrinsic stress moment constraint /\mmq may be
ignored by noting from (3.2.11) and (3.1.13) (for an incompressible phase)
that

(T g7 — _p 5, 1 (@) J17 —
amzq U Z / (ab) T dU Pa5zq U ; /(.j(ozd) Em dU 0
(6.12.32)

where p, is an average value of the reaction stress due to the incompress-
ibility constraint in phase a. Similarly, substituting T(“ ) = —pabim into
(3.2.12), the surface traction moment becomes

Samj = _paéijSa (6-12.33)
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Using these results, v ,J = $obij, and

1

Tij = —PaPadij (6.12.34)

in (6.12.31) (and for the moment concentrating only on the mechanical
effects where g,,=0), we obtain

Pa(faii + ¢a) = 0 (6.12.35)

a result which is clearly not equivalent to the result (6.12.7) when é, =0.
This is perhaps unfortunate for it signifies that either the assumption of the
material deformation relative to the center of mass (5.1.1) or the theoretical
framework of constraints laid down in section (6.12.3) is incomplete or
incorrect.

Towards the resolution of the above problem it may be recalled that
the assumption (5.1.1) is somewhat arbitrary in representing the phasic
dilatational effects because it is also possible to assume that:

a Al ¢a
v =5 4 o8 (6.12.36)

where @o/d, now represents the effect of dilatation, and where the result

(5.1.7) is modified as follows

9 = ¢ £ (ao) (6.12.37)

Ignoring again the thermal effects, using (6.12.32)-(6.12.34) and (6.12.36)
with u(a) =01in (6.12.31), we obtain

Po(Pa + Palaii) = 0 (6.12.38)

a result that is now consistent with the incompressibility constraint (6.12.7)
when é,=0.

The phase change process within the incompressibility constraint may
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be accounted by retaining g, in (6.12.31) and by arguing that®

Ca

foo = —Paz (6.12.39)

Po

Using this equation, (6.12.32)-(6.12.34), and (6.12.36) with f/,-(;’) =0 in
(6.12.31) gives now a result that is consistent with the incompressible form
of the continuity equation (6.12.7) with phase change, i.e.

~

Po(®a + Pabuis — %) =0 (6.12.40)

The recovery of saturation constraint (6.12.3) from (6.12.11)-(6.12.13)
or (6.12.15)-(6.12.17) is not feasible. For this reason, the condition (6.12.3)
in the theory of multiphase mixtures in this book will be taken as consti~
tutive and not as a constraining relation. Taking the condition (6.12.3) as
the constraining relation allows for the work or entropy production within
each phase or within the mixture as a whole, as discussed in section (6.12.2)
for the postulatory theories of mixtures. The postulatory theories of mul-
tiphase mixtures also assume a single reaction force for the mixture as a
whole and identify this force as the interface pressure. Except for a mixture
of two phases, the concept of single interface pressure for many phases in
a mixture cannot be physically justified, in general. As will be seen in the
following chapter, the theory of multiphase mixtures of this book produces
an interface pressure for each phase in the mixture as physically required.

6.13 Principle of Phase Separation

In formulating the constitutive assumption or calorodynamic process (6.2.6),
use was made of the principle of equipresence. This principle has been used
extensively in single phase multicomponent mixture theories (BOWEN,1976)

3The plausibility of (6.12.39) may be established from ({2.2.6) by noting that the constrained energy
transfer rate across the interface of phase a is equal to

D / D 1 (G T ) ]
= Jatas

from where, if it is assumed that such an energy is balanced by the work of the constrained mechanical
forces, it follows that

Z/ (=)@ 4 ¢"(29.n(D)] da = 0
s Jalad)

Using now the definitions (3.3.9) and (2.4.15), and assuming that ¢'(@%) = _p,/p,, we obtain from the
above equation the result expressed by {6.12.39). The assumed form of the constrained energy function
€'(a8) js plausible owing to the requirement of s"(26) =0 (cit. (6.12.18)).
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which states that there should be no a priori reason for discriminating any
thermomechanical variable in the list (6.2.7) from entering into each of
the response functionals (6.2.5). For multiphase mixtures, it is argued
by some that the phases are physically separated and that the principle
of equipresence should be replaced by the principle of phase separation, or
“Hypothesis of phase separation” as proposed by DREW & SIEGEL (1971).
According to this principle, the constitutive relations (6.2.5) should be di-
vided into two groups:

1. The bulk phase variables:
T, Ma, &, Go; 5a; Uas Aa, Léa (6.13.1)

2. The interphase variables:

éay 3a; 1, Sa; ta; &, Gaa (6.13.2)
The bulk phase variables are required to depend only on the independent
variables from the same phase, whereas the interphase variables are re-
quired to depend on all independent variables of the mixture.

The principle of phase separation has been extensively used by PAssMAN
and co-workers (PASSMAN et al. (1984)), whereas the principle of equipres-
ence was used by DOBRAN (1984b) in the studies of constitutive equations
for multiphase mixtures. The reason for using the principle of equipresence
in the constitutive assumption (6.2.6) is that it is the correct choice for a
theory of multiphase mixtures based on the volume averaging approach, or
for any theory based on the superimposed continua model. The constitu-
tive variables (6.2.5) are volume- and area-averaged quantities defined at
the same point of space of the superimposed continua as discussed in chap-
ter 2. They depend not only on the volume averaging region U, but also
on the distribution of all other phases in this volume. Consequently, there
should be no a priori reason for discriminating any thermokinetic variable
in the constitutive relations (6.2.6). The most convincing argument for
using the principle of phase separation in the constitutive relations is to
reduce substantially the number of independent variables entering into the
constitutive assumption and thereby producing a simpler model. Such a
reason cannot, however, by justified a priori and the use of the principle
of phase separation on a priori grounds appears too artificial and will not
be used in the subsequent study of constitutive equations.

6.14 Concluding Remarks

The concepts and principles of constitutive theory of multiphase mixtures
are fundamental to the studies of constitutive equations. These concepts
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and principles were discussed at length in order to provide a basis for stud-
ies of constitutive relations in the following chapters and elsewhere, and
to identify the unsolved problems in the theory. By utilizing the ideas
of this chapter and field equations of previous chapters, it is possible to
develop a wide variety of models of structured multiphase mixtures. In
the subsequent chapters, the studies of constitutive equations will neces-
sarily be limited to mixtures with simple structural properties, primarily
to determine the usefulness of the theory to model the simplest physical
phenomena.



CHAPTER 7

CONSTITUTIVE EQUATIONS

7.1 Purpose of the Chapter

The concepts and principles of the constitutive theory are fundamental to
the study of constitutive equations. In this chapter, use will be made of
the balance equations and principles of the constitutive theory discussed in
previous chapters to develop constitutive equations for special multiphase
mixtures. The constitutive equations are models or assumptions of the ma-
terial behavior under the imposed mechanical and thermal loadings. With
an established set of field equations of multiphase mixtures it may be pos-
sible to determine the relative merit of different constitutive assumptions
and thereby establish the range of applicability of various models. The
evaluation of models should consider, however, that different studies of
constitutive equations may be employing different constitutive principles,
such as the principle of equipresence vs. the principle of phase separation,
an entropy inequality or axiom of dissipation for the mixture as a whole,
vs. an entropy inequality or axiom of dissipation for each phase, the con-
straints which do not produce entropy in the mixture or in each phase,
etc. The constitutive equations may also conveniently consist of approxi-
mations of the full tensor representation of the independent variables, thus
further complicating the evaluation of relative merits of different models.
The multiphase mixture models are difficult to evaluate quantitatively
due to their complexity and lack of information on the phenomenologi-
cal or transport coefficients in the constitutive equations. The transport
coefficients may be determined from fundamental experiments where the
physical variables should be consistent with averaged variables used in the
construction of the theory. In a theory of multiphase mixtures which is
constructed by the volume averaging approach, the physical variables are
instantaneous quantities determined on a sample of volume of the mix-
ture and may be determined experimentally in some situations from a
holographic image analysis of the flow field. At the present, however, this
imaging techniqueis not sufficiently developed, and the current experimen-
tal methods produce essentially time-averaged variables which may be con-
sistently used with a time-averaged set of field equations or time-averaged
form of the volume-averaged equations. It should be noted, however, that
in the discussion of kinematics of multiphase mixtures in section 2.4.1, the
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particles X, and X(® have different meanings, or the material particles of
phase a should not be confused with molecules of phase a. For this reason,
as in the postulatory theories, the above "measurement” problem does not
really appear in the mathematical theory of mixtures.

To account for the incompressibility constraint within the theory of con-
straints of multiphase mixtures discussed in section 6.12, it was necessary to
redefine the affine deformation assumption (5.1.1) to the form of (6.12.36),
in order for this constraint not to produce entropy and work in each phase
of the mixture. This procedure is reasonable, since the incompressibility
constraint is then not maintained by the phasic or mixture’s thermokinetic
processes. The penalty for this construction is clearly a further divorce of
the volume-averaged field equations from the postulatory theories of mix-
tures as discussed in chapter 5. For compressible phases, the theory of
constraints may not require the modification (6.12.36). The difficulty of
accounting for the saturation constraint in the theory of constraints is dis-
cussed in section 6.12.5, where it is concluded that this constraint within
the volume averaging theory should be treated as a constitutive equation
rather than a constraint. In the postulatory theories of multiphase mix-
tures, the saturation constraint produces the work and entropy in each
phase of the mixture.

To continue with the development of a theory of structured multiphase
mixtures based on the volume averaging approach, it is reasonable, there-
fore, to develop the constitutive equations based on the affine deformation
assumption (6.12.36) rather than (5.1.1). In the following, the assumption
(6.12.36) will be adopted to derive first an equivalent set of field equa-
tions of sections 5.2 and 5.3. These equations will then be used, together
with the methods and principles of the constitutive theory of chapter 6,
to investigate constitutive equations for mixtures of compressible and in-
compressible phases in order to ascertain the utility of results to model
structured multiphase mixtures.

7.2 Balance Equations of Multiphase Mixtures
with Rotation and Dilatation

Repeating the procedure of section 5.2, but with the affine deformation
assumption

by

5, ot (6.12.36)

V) = 5 4
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instead of (5.1.1), the equivalent equations to (5.2.2) and (5.2.3) are, re-
spectively, as follows

A}

ﬁa(za 220% = —Culg + ka“-; j=n (7.2.1)
bojn=0; j#mn (7.2.2)

Equation (7.2.1) may also be written in the form of (5.2.4), i.e.

P

Pala = _éa:;a + Kaj;j + kajj,',,' + ’:’ajj (7.2.3)
with the conditions (5.2.5)-(5.2.7) modified as follows

i - s P, A B a ¢a

kajj = Calajj — (paIamjj),m = Calajj — r(nnm ajjn ( C!]]m),m

(7.2.4)
- ¥ a ¢a
kajiii = (—Padniji)i = — D Unjin ~ ( Usjii).i (7.2.5)
K.y = 25227, (7.2.6)
ba

’vca]] = éa;czjj (5.2-8)
Kajﬂ = 0’ Z:c!jn + kajni,i = 0, fO’I" ] -'}é n (5.2.9)

where use is made of (5.2.11). The balance equations equivalent to (5.2.13)-
(5.2.18) are

Pat a[(dt(¢°)+(¢a)2 N8 4 b ]

= Sagsk) + Pala(jk) + Aa(ikymm + Ta(jlc) (7.2.7)

Patali) + 2¢“ u) =

_Eljk(sa[ﬂc] + pala[_yk] + Acz[_ylc]m,m + Ta[]k])
(7.2.8)
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where

A Y A Y
s . afa) 2 o 2 ~ afa)- -
Tajk = Gajk — Vl(cn)kajn - ‘_‘kajk - paVr(nj)vak,m"'a pa ¢ vak,]"la

Pa
(7.2.9)

Ay

Ta(ity = —Pata za ajk — (VIE(;zUaj[i + VJ(-ZEUQM,-)

(0 4

1 . - -
+2F’S )[Emlz(an)mUaJnl + _§n,)m aknl) + pa"'a(vak,mfmji + vaj,mfmki)]

= - = &a ¢a (o3
Ta[jk] = pa"'a’__Wajk ( ](c[)Uajli - J[,U klz)
Pa B 2
MCIN

1 -
+ 2#’5 )[Emll(ukn mUaJnl Vinm aknl) + Pa"'a(vak m€mji — VajmCmki )]

aJJ (an)lU gnd + pa"'avaJ,J) + P' Emlz( Jn,mUajnl + ﬁa;aiat,m)

pa‘ea(ﬂc) _pa"'a(ll’( ) (a) (a) ( a)g. i)

1 -3 /- -

2#5 )[Emlz(l/]m mUaJnl + .§ﬂ m aknl) + pa"'a(vak,mfmji + vaj,mfmki)]
(7.2.10)

Equation (7.2.7) thus becomes

d P
Pa"a[dt(za

~

_ 1 Pa
) + ( )2] jk = Sa(]k) + Ac!(_]lc)m,m pa"'a?’S_Dajk

(0 4

1 ¢a
_§é"('/kl)Uale + leUakli) (7.2.11)

Multiplying (7.2.1) by ¢o/do and adding the result to (7.2.11) gives

~

(o (o4 ¢ 1 ¢a
[ za (¢ )2] k= Sa(Jk) +/\a(1k)mm caza¢ =6k + km,¢a5

= ‘a 1 ‘a [+
—p g5"'1)c¢jlc - 52 ](c[)Uale +v J[ ;Uaklz) (7-2-12)
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Notice that equation (7.2.7) is equivalent to (5.2.13), (7.2.9) to (5.2.15),
(7.2.10) to (5.2.16), (7.2.8) to (5.2.19), and (7.2.12) to (5.2.18). The en-
ergy sources (3.4.15)-(3.4.17), and energy equations (3.4.18) and (3.4.19),
become:

5 5 () ()7 o ba-

€a = 6a + Ca (vazvaz + Vzm im la
o P

boi \z
5zm ami
8.0m)5

(7.2.13)

ia) + () +

~

€x — _ﬁaiﬁm cafa - Ejmn[ll’n (Samj + pa amJ) + (p’n am]i

baday o

+€mk#(a)ﬂ'§c )"'a ajpa) z] [ (Sau + palau) + (¢a ammz - ¢ ¢ azpa [+

o Pa

(a) (a)) _ pa( °‘¢a y

—Pa (Zall' =)+ é

(7.2.14)

1:‘—.- ki o3 [o% 1 ¢a ¢a T - e -7 =
Evaivai + zaﬂ'gl )pﬁl ) + = 2 ¢a ¢a = (TaijVai)j — Guii + PabaiVoi

_caEa - Ejmn[ll'n (Samj + pa am]) + (#n amji + Enikﬂgg)ﬂgca);aiajﬁa),i]

¢a . (‘#a (}a -~ - i A
( Aammi s 2 BaiPata)i + b

Pol€a +

+paTa + I(Saii + pafaii) +

(7.2.15)

pafa = az]vaz,] — Goiy + PaT'a + (V,(:;:)q + ( ),qazm)hamzq

2: 5zm)(gami + gami) - éa [Ea — %i}aiﬁai

Sia(of2) ,<:>+j"j“)1 P60+ %2900 e, (r20)

Using (5.1.9), (6.12.36), and (4.3.47) in (3.3.3), (3.4.10), (3.4.11), and
(3.4.13), gives

i" bim) saia (512 + 225,0) (7.2.17)

Pai = Fai — (0 + 4 oim
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gajk = éc!:’\:czjn(l;](;:) + ﬁékn)
—[(o)ol) + "5"(&" ) + 5 8)Vasnt + (22 Vnsiomlm (7.2.18)

A}

Eajkm = Xozjlcm - l;r(:j)paﬁak;a - ﬁa%i}ak;a&mj . (7-2-19)

(0 4

ga]k - pa"'a( (a)V](c(:,) + ( )Zéjk) + gajk + vak[paza(u(cfj) + za 6m])],m
(7.2.20)

7.3 Balance Equations of Multiphase Mixtures
with Dilatation

The balance equations of multiphase mixtures involving only the dilatation
are obtained by ignoring the rotational effect (5*) =0 or u(®)=0) in the
equations of section 7.2. The complete set of these equations (which is
equivalent to equations of section 5.3), are:

Po + Pabaii = éa (2.4.14)

PaVoi = Toij; + Pabai + Tai — Eabai (3.4.2)
Maij = Taij — T (2.4.31)

ﬁaéa = —Cota + kajjii + Kajj + kajj (7.2.3)

Ly
~

i 8ik + Sa(ik) + Paiiymm + Jagry  (7-3.1)

pa(;af)gjk - caza

Safik] + Palalik] + Nafikimm + ﬁaia%WaJ’k Z"(z" )i Uaityi = 0 (7.3.2)

Y —

Pata = ToijVaij — Jakk + Pafa + € (7.3.3)
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Pada + v.(ga) Pala | i 5 +3a>0 (2.4.45)
where
Thai = ﬁai + éaﬁai (3.4.1)
Pai = (¢°‘) ; Po— z"za (7.3.4)
kajji - ¢a Ua]]z (735)
ba
Koy = 25 Z" : (7.2.6)
Foji = Catajj (5.2.8)
Ea(jk)m = xa(Jk)m - 5[7(1.2:0%(50195,"] + 5016mk) (7,3.6)
1 N N
ga(Jk) ga(Jk + paza( )2 Jk + 2[ ak(pazai )1] + vaJ(pazai )JC]
(7.3.7)
A 1. $a,n o aday) baday)

ga(jk) = Eca‘g‘(zajk + Zakj) 2[(2 ¢ a]km),m + ( ¢ akjm),m]
(7.3.8)
éa = _éa(éa - ) — @sa t+ (¢a) Aoz_]_]z (‘qﬂ{—azﬁxi),i (7.3.9)

where (7.3.9) follows from (3.4. 15), (3.4.17), (7.2.3), and (7.3.1). From
(7.2.10), it follows that £,;x) =

The entropy inequality (2.4. 45) may be written in an alternate form by
eliminating in this inequality pa7s by the aid of the energy equation (7.3.3)
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and Helmholtz potential (6.12.8), i.e.

~

[

- L 1 = .= L - -
—ﬁa(saﬂa + ¢a) - 5-_(_ia'voa + 8.0, + Taijvai,j + (%),m Aozlclcm
- aA 7a 7 &a_ 7 ) - éa
—Gsa + ca(Ea - "pa) - (?,S_pa‘efai),i + pa(¢a + ¢avai,i - [_—7_) Z 0
(7.3.10)

where the incompressibility constraint (6.12.40) has been introduced with
Po being the reaction force due to this constraint. For the purpose of
developing constitutive equations of compressible and incompressible con-
stituents of the mixture it is always desirable to include in the entropy
inequality the incompressibility constraint, since in the former case one
simply sets in the final results p, =0 for the compressible phase a.

Equations (2.4.14), (3.4.2), (7.2.3), and (7.3.1)-(7.3.3) provide a set of
13 algebraic equations for 13y unknowns

Pas Vaiy bai, ¢a, ga’ ;a, la[jk], Ta

It is then sufficient that the remaining variables

To = (éa’ Tm Maa Qos 3o, '¢’~a, 3a, ia, Ua, xa, ga, Ea, Zfa, Aéa, Qsa);
a=1,...,v
(7.3.11)

be determined by the constitutive equations which are restricted by the
entropy inequality (7.3.10). Notice that all the constitutive variables in
(7.3.11) are frame-indifferent, as discussed in chapter 4. The body force
moment is not frame-indifferent, and from (7.3.2) it is necessary, but not
sufficient, that

A}

‘Za[jk] = _ga%wajk (7-3.12)

7.4 Constitutive Equations for Mixtures
of Isotropic Fluids

As an illustration of the method to determine constitutive equations for
multiphase mixtures, a somewhat detailed consideration will be given in
this section to a multiphase mixture composed of the fluidlike phases. It
will also be assumed that the mixture properties satisfy the principles
of local action and smooth and local memory, and that the independent
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variables in the constitutive equations form a subset of the set of section
6.10, i.e.
= 55, Vg, D LW, By, Vs, 55— 9, 5, 92, (22
To = Gah‘,[Pﬂ,VPﬂ, B Wﬂ L R) oﬂ, By VB — Vo, 1, ¢ﬂ, (¢ﬂ)]
(7.4.1)

or since
P8 = bsPs (7.4.2)

and ignoring the independent variation of V(}ﬁﬂ, gives

T, = Gah‘r[f——’ﬂavﬁﬂa DﬂaWﬂ an oﬂavoﬂa vﬂ 7a lﬂa ¢ﬂav¢ﬂ’ ¢ﬂ]
= Gaﬁ[{sﬂ}]
(7.4.3)
where for each a, a=1,...,v, 8=1,...,7.

For the substitution into the entropy inequality (7.3.10), the time deriva-
tive of the Helmholtz potential is

b =TI+ 52 5o+ o D)+ 2 + S B
+6(Wﬂf¢ 7”)((VVﬂU 711)) + a( a¢a )((vﬂl vﬁl))
e+ g+ gl + e (e

where, for example, (p ) is the material derivative of 4 following the mo-
tion of the a’th phase and it is defined as

2 9p = 9p = 3 5 (v ¥
(pg) = atﬂ + Vo, —BTﬂ + Vg + V-pg(Va — V)
= ;—3 + P iVai — i) (7.4.5)

with p pp having the usual meaning as the material derivative of 5 ps- Equation
(7.4. 4) can be, therefore, written in the following alternate form

\

2[a¢“(pﬂ+pﬂ,(vm ) + 5 (B + Bl — 527)



138 CONSTITUTIVE EQUATIONS

0o x = . -

3 D U(Dﬂu + Dpij(® 3%, = (05 + 03,i(Pai — Dgi))
o .

+ (Wais — Waij + (Waijk — Waij) (Bak — Tan)

3( Wﬂu 711)

Wijik(Vr — Oyk)) + 3_1‘pa((%) + {ﬁgﬂ},i(".’ai — g;))
0¢s

~a =" " -~ - a P = - -
P (B} + Dpigls — 555)) + a—’ﬁﬂuﬂ T i{Fai — 7))

8.
6 N ) 89, -
o 5 (B + bl = 99) + a;f (b, + doss5es — 55 — b3
3}
+6_(v;£—v_7,5(vﬂ' vvz-l-(vﬂ“a i WVaj — D) — Ui (Vg5 — Uoyj))]
(7.4.6)

with the notation that the operation on the quantity enclosed by brackets
{...} is performed first.

From the balance of mass equation (2.4.14) and equation (7.4.2) it is
possible to solve for }_‘;ﬂ, 1€

Ay

5 = %‘; —3 j — Pasi (7.4.7)

and substitute (7.4.6) and (7.4.7) into (7.3.10). Performing these oper-
ations and requiring that the resulting entropy inequality is satisfied for
arbitarry values of

{Pﬂ, }a pﬂ,z]’ Dﬂu, Dﬂ!J,ka WﬂzJ W‘Yij’ Wﬂi.i, - in.i,k’

gﬂ’ {oﬂ, b oﬂﬂl’ vﬂ' v‘Y“ zﬂ,n Zﬂ’ (¢ﬂ)’ {¢ﬂ},z’ $s.ij

appearing in this inequality, it is sufficient and necessary that the coeffi-
cients which multiply these variables be set equal to zero. If this were not
true, then it would be possible to find at least one thermokinetic process
that would violate the entropy inequality. Thus:

a1l

Coefficient of:
L _ O
0(1 . a — T = 7-4-8
8 26. (7.4.8)
-‘éﬂ: 615020; g=1,...,a—lLa+1,...,9 (7.4.9)
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= = O,
oﬂ,,'j, {oﬂ,;} . B%b = 0; ﬁ = 1,. e
By
=" = 0 ~a
{ﬁﬂ,i}, Pg.ij * a;_i‘—o B=1,...,v
b, O _ o gl
Dyij aDﬂij_O, B=1,...,7
. . oY,
(Wﬂij - W‘Yij) : B(Wﬂj¢ J) - 0’ ﬂ = 1,‘ %0 A 1
: »yz
Y Y . a"l’a _n. _
(Vgi — i) : m—o, B=1,...,7-1
. R
3 =0; B=1,...,a—-la+1,...,
{¢ﬂ},1 a¢ﬂ,i ﬂ a [2 7
Q B,
B): Gt =0 A=l
, . 1_ -
{¢a},,' : pa%‘j = ‘J’Aakki - a—palfai
Y . o
18, 16, ¢ i;fﬂ =0; B=1,...,9
and the entropy inequality (7.3.10) becomes
1 - 7 - i a";b'a éﬂ a"l’a ﬁﬂ a¢a
_.—__Qaioa,i - Pa [T‘_‘ - = 7
O ;, 05 s Opsbs Odg )95
8 3, . 8. O -
Haz ¢ ¢ ¢ﬂ,z)(vm — Ug;) — f pgtrDg]
0pg
+fa (}a ¢a(pa + 7ra) akkm¢a,m ¢aﬂa - (ﬁaanZEai),i]
+éa(""¢’a - ;_a - = + Ea) +T a,Jvaz,] uai{ai = Ra({Sﬂ}) >0

where:

(7.4.10)

(7.4.11)

(7.4.12)

(7.4.13)

(7.4.14)

(7.4.15)

(7.4.16)

(7.4.17)

(7.4.18)

(7.4.19)
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T;;,J is the extra stress:

_ _ _ o,
T(:zj = C!i] + ¢a(pa + 7-ra)61] + ﬁa¢a ¢ ¢a,1 (7-4-20)
0o
7o 1s the thermodynamic pressure:
To = P2 g«_pa (7.4.21)

B. is the configuration pressure (PASSMAN et al.,1984):

- Oa
o = PoPor 4.
iaklm is the reduced intrinsic hyperstress:
=R = B'J)a
Aaktm = Pa¢a5-¢;;5u (7.4.23)
and f, is a variable defined as
fa = §a§a - qsa + ua'fa (7-4.24)

whose properties will be discussed below. Notice in (7.4.20) that p, =0
for a compressible phase a and that 7, =0 for an incompressible phase a.
From (7.4.17), (7.4.2), and (7.4.23), it follows that the reduced intrinsic
hypersiress may be written as follows

= 1- _ =

AcI:kkm = IAakkm - pa‘eﬁam (7'4'25)

Equations (7.4.8)-(7.4.18) show that the Helmholtz potential 9, has the

following functional form:

'¢’~a = ¢~a(f_—’ﬂ’§a’ ¢ﬂ’ V¢a) (7'4'26)

Thus the Helmholtz potential of phase a not only depends on the density
and temperature (as in a single phase, single component mixture), but also
on the structural properties of the mixture expressed by the volumetric
fractions. Moreover, ¢, does not satisfy the principle of phase separation,
since for each a, a=1,...,7, f=1,...,7 in (7.4.26).

To obtain further restrictions on the constitutive variables appearing in
the entropy inequality (7.4.19) it is useful to define an equilibrium thermok-
netic process with the following characteristics:
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1. The entropy inequality (7.4.19) becomes an equality.

2. V85=0 (no temperature gradient), ¥5=v (no diffusion), Ds=0 and
W5 =0 (no viscous effects), and <}Sﬂ =0 (no dilatational effects), for
B=1,...,v

From (7.4.19) and (7.4.3), it then follows that

Ra(;sﬂ, Vg D=0, Ws— W, =0, 8, V83 =0,¥;,— ¥, =0,
Zﬂa ¢ﬂ’ V¢ﬂa 8 — 0) R, ({Sﬂo}) =0 B=1,...,7 (7427)

This definition of the equilibrium state is consistent with the definition
in the equilibrium thermodynamics, since in such a state no possibility is
allowed for the temperature gradient, and viscous and dilatational effects.
Clearly, a mixture with these properties is by no means an ideal mixture,
since it is not assumed that Vp,=V¢5=0.

The properties of the equilibrium thermokinetic process can be deter-
mined by using the method as in DOBRAN (1984b). For this purpose, let
A be a parameter and set

Ds = Mg, W = ABg, Vi = dag, 75 = v + Aby,
V5= ACq, ¢5 = Mg

Taking account of (7.4.25) and substituting these parametrized properties
into the entropy inequality (7.4.19) results in

L (5D hani — o 30 (HelLSD B ({502]) _ Oel{Saa}) P

g, iz 0Opg és Ops 93
_ ‘9_.____%59{(’55“}) YA + (a'p"({s‘”}) Poi+ —————a’p"g{{b‘g‘”}) $5:)A(bai — bs:)
BL(}S&D 4Mbgs.] +fa({5ﬂx})+ 2 14, (pa + £l {S)

—ifkkm({sm})«;sa - ¢aﬂa({sﬂx}=) - (3a¢af€ai({5ﬂ»\})),i]
Feal{SarDl-Fal{S}) — 22— Tallml) 3 rq 1y

(1 «

+T5i;({553 ) ACaij — Mbailai( {Sp2}) = Ra({Ssr}) >0 (7.4.28)

where the set {Spa} is comprised of the independent variables as in (7.4.3).
Since Ro({Ssr}) >0, and R ({Sgo}) =0 (cit. (7.4.27)), it follows that

in the equilibrium state
dR.({Sa})} _
( ) L 0 (7.4.29)
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Performing the above operation on (7.4.28) and requiring the arbitrariness
of Ag, By, ag, bg, Cg, and 75 for §=1,...,7, results in the following
equilibrium state properties:

Obal{5m) _ o OallSod) _ o g1 0 latl..

B;ﬂ ’ 3(}53 ’
(7.4.30)
Zi({Sp0}) =0, T5ii({8s0}) =0, Zai({Ss0})=0; a=1,...,7
(7.4.31)
balpa + Fal({Sa0})] = Xakim ({S20})am — bafBa({Se0})
—[PaPaleai( {Spo})]i =0 (7.4.32)
éa({Spo}) = 0, ié"%fﬂ}—) =0 (7.4.33)

Fal{Ss0}) =0, i"%‘sﬂ) =0 (7.4.34)

The results expressed by equation (7.4.30) can be used in (7.4.26) to
show that

Pal{5p0}) = 92(FarOas s V) (7.4.35)
Moreover, from (7.4.20) and (7.4.31), it follows that
_ N ., 09,
Toij({Spo}) = —@alpa + Ta({Spo})16i; — pacba%cba,; (7.4.36)

whereas (7.3.1), (5.3.6), (7.3.6)-(7.3.8), (7.4.33)1, and the definition of equi-
librium state {Sgo} give

Sokk({Ss0}) + Aakkmm({Ss0}) =0 (7.4.37)

From (7.4.36) it is thus seen that even in equilibrium the stress need not
be a hydrostatic pressure. This important result, which accounts for the
structural properties of the mixture, is further discussed in section 7.8.

The results represented by equations (7.4.32) and (7.4.25) can be com-
bined to produce a solution for the intrinsic stress Agkkm, i-e€.

Aakim ({Sgo})bam + $aBa({Sao}) — ¢a(pa + Fa({Ss0}))
+¢a(Paleai({Spo})i — GamPadaléam({Sp0}) = 0 (7.4.38)
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Taking the divergence of (7.4.25) and combining with (7.4.32) and (7.4.37)
gives

3 o ({S50}) = Bl {Ss0}) + ;};Xakkm,m (P + Fa({Ss0})

= Ba({Sp0}) — (Pa + Fal{Spo})) — gl;gakk({sﬂo}) (7.4.39)

showing that the equilibrium surface traction pressure P, defined by

P, = —¢i Se({Ss0}) (7.4.40)

is maintanied by the configuration pressure B,({Sgo}), hydrostatic (ther-
modynamic) pressure p, (7o), and inhomogeneous distribution of the re-

duced intrinsic stress A, ({Sgo}). If phase a is characterized by an aver-
age interface pressure P, and the adjoining phase 8 by an average interface
pressure Pjg, then from (7.4.39) and (7.4.40) it follows that

~(Po— Bg) = Bal{Sp0}) = Bs({50})
~[(Pa + Fa({Sg0})) — (85 + Fo({Ss0})] — Rk — Agikm)om (7:4.41)

For a multiphase mixture which can be characterized by a single interface
pressure P, the above equation is reduced to

(Pa + 7a) — (Ps + 74) = (Ba — B8){Sa0}) — Crakiom — Airm)im({Sa0})
(7.4.42)

This result, which is similar to the one discussed by PASSMAN et al. (1984),
shows that the difference between the phasic pressures in a homogeneous
mixture is determined by the configuration pressure. But in a two-phase
mixture in equilibrium, the difference between the phase pressures may
be related to the surface tension and average interface curvature, as can
be readily seen from equation (2.2.6) when specialized for the momentum
equation in Table 2.1. Consequently, it may be permissible to state that
the difference in configuration pressures in (7.4.42) can be related to an
average surface tension force and curvature of the interface.

The function f, defined by (7.4.24) is positive semidefinite and vanishes
in the equilibrium state {Sso}, as may be seen from (7.4.19) and (7.4.34).
The entropy inequality (7.4.19) imposes restrictions on the material prop-
erties appearing in the constitutive equations, and in the next section a
consideration will be given to the linearized analysis of constitutive equa-
tions to determine the simplest forms of these equations. The restrictions

imposed by the entropy inequality on the material coefficients is discussed
in section 7.6.



144 CONSTITUTIVE EQUATIONS

7.5 Linearized Constitutive Equations
for Mixtures of Isotropic Fluids

The linear constitutive equations are usually not fully satisfactory to de-
cribe multiphase flows and need nonlinear modifications to construct useful
models. Nevertheless, the linear analysis of constitutive equations provides
a starting point to the more complete physical modeling and it produces
the simplest results which are often necessary for practical applications.
The linear analysis of constitutive equations (7.3.11) involves at first
the selection of an equilibrium state for the mixture about which the lin-
earization can be performed. This state will be selected as follows:

{Splio} = {ﬁﬂ’ V_ﬁﬂ =0, Dﬂ =0, Wﬂ - W7 =0, Eﬂ’ Vgﬂ =0,

V-V, =0,i3=0, ¢g, Vg =0, ¢5 = 0} (7.5.1)
such that upon comparison with (7.4.27) gives
{Sgo} = {Sa} U Vpz Uiz U Vg (7.5.2)

The selection of the equilibrium state {Sg,} about which the linearization
of constitutive equations can be performed implies that nonequilibrium ef-
fects and structural characteristics of the mixture are not very significant,
if only the linear deviations of independent variables (7.4.3) in the consti-
tutive equations (7.3.11) from this state are retained. A measure which
relates the importance of these effects from the state {S;’ao} can be defined
through a quantity which is defined as follows:

Y Y
=2 C15V PV g + D _ Coptr(DDg)
) )
y—1
+)_ Captr[(Ws — W,)(Wg — W,)]
3
v - - v-1 v .
+§: vaoﬂ-vaﬂ + Z Css (\”rﬂ — {’7)-({7; - ‘77) + Z Ces tr(iﬂiﬂ)
3 3 3
Y Y « -
+> . C15Vds- Vs + Y Cospsds (7.5.3)
3 )

When ¢ = 0, (7.5.3) implies that Vj; =0, Dg =0, W5 =0, V§, =0,
Vg=v,i3 =0, Vg = 0, and <}Sﬂ = 0. Following the procedure as in
DOBRAN (1984b), given an integer n, let the function of

Vs, Dg, Wg—W,, Vi, v5— ., is, Vg, ¢



7.5 LINEARIZED CONSTITUTIVE EQUATIONS 145

be denoted by O(e") with the property that | O(e") |< Me" ase — 0,
where || ... || is the Euclidean norm, M is a positive constant, and 0 < ¢ <
1. The condition £ < 1 implies that the density gradients, viscous effects,
temperature gradients, diffusion of phases, inertia, volumetric fraction gra-
dients, and dilatational effects of the mixture are small. The coefficients
Cig,--.,Css in (7.5.3) are suitable reference variables which allow € to be
expressed in a nondimensional form.

With the above definitions, the constitutive equation for the heat flux
vector {, may be written as

dai({Sp}) = qm({SﬂO}) Z M" Z aqm({sﬂo})

ﬂJk

+”>‘:1 030i({Spo}) (Wi — W) +>:Bqai({5ﬂo})§,

—_— W ] = ,
5 O(Wgjk — W) s 06s; -
qu({sﬂo}) 2 05i({S0}),. .
+ ), — + = (\V8j — Uqj
; a’ﬂﬂc ok E a("’ﬂJ '"w')( bi W)

i aqm({ 0}) aqal({sﬂo}) 2
+)ﬂ: 9%, ﬂ,,+}ﬂ:———a¢ﬂ s+ O(€?) (7.5.4)

Notice in the above equation: (1) ai({Ss}) = 0 because of (7.5.2) and
(7.4.31)1, and (2) the third, fourth, sixth, and ninth term on the right of
the equation are equal to zero, owing to the isotropicity of the constitutive
function q, and its derivatives. The odd order isotropic tensors change
signs in an improper orthogonal transformation (SPENCER, 1971) and all
odd order tensors in (7.5.4) are required to vanish, i.e.
0% o 0%, O &
oD, ' AWs—W,) 7 8, B¢

and the even order isotropic tensors have the following representation:

03ai({Sgo}) _ 04ai({Sg0})

=0

= = —Vaﬂ5i', = —ﬁaﬂ5i'
OPs.i 7 0l ’ (7.5.5)
0dai({S50}) 0d0i({Sao})
o~ = —(apbij, ——Fa——— = —Tosbi;
O(Dg;5 — By;5) s 0dp.; o

where v,g, Kag, {ag, and T,p are functions of the equilibrium state prop-
erties

{S;ao} = {Eﬂa 5ﬂa ¢ﬂ}a ﬂ = la'“a7
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Equation (7.5.4) thus becomes
v-1 3 3 ¥ -
Goi({Sp}) = Z Vs Pai — 2 Can(Tsi = Tvi) = D Kap B,
8 8

- Z Tap ¢ + O(€”) (7.5.6)
B

Following an analysis identical to that which produces (7.5.6) and using
(7.4.31)3 and (7.4.33),, the following forms of constitutive equations for the

interaction force t, and the internal energy density moment Le,, of each
phase can be established, z.e.

tai({Ss}) = Z')’aﬂ Bsi — 2;;: €ap(Tpi — i) — Eﬂ: Boppg i

3" Mo g5, + O(e?) (7.5.7)
B

»y _ ‘y—l . ~ 'Y _
pa(balea, {Ss}) = Z gbpi+ Z 5‘1’,ﬂ(”ﬂi — i) + Z €2.6 Pp,i
B B 8
~
+) & s9si + O(e?) (7.5.8)
B

Physically, it is expected that T,-(fg)({Sl',O}) = —pqbij, where p, is an av-
erage pressure in the equilibrium state {.5';;0}, and upon substitution of
this expression into (3.3.2) and making use of (2.3.3) and the equilibrium
state {.5';,0} (where V¢, =0), also yields the continuum mechanics result
(7.4.31)3, i.c.

-~ ' 1 o
tai({SﬂO}) = _Pa?j Z/(Ad) nS %) da = pa¢a,i =0 (7.5.9)
5 Ja

In deriving the constitutive equation for fe,, use was made of another
reasonable physical requirement that this energy density vanishes in the
state {Sgo}, which may be seen by taking e(*®)=constant in (3.3.7) and
using (3.1.13). A result from (7.5.8) which will become useful later is that

-1
(Pataleai)i = 72 € 5(trDg — trD,) + O(€?) (7.5.10)
B



7.5 LINEARIZED CONSTITUTIVE EQUATIONS 147

The extra stress tensor T¢ is a second order isotropic tensor and its
representation is

T2,({Sa)) = T (i) + ZBT‘:”({S@})

pinky BTCU({S 0}) aTezJ({S 0})
Za(Wﬂkl : )(WW 7M)+E ﬂﬂ

oTe.:({S

+E J({ ﬂO})
5 0

with the following requirements (SPENCER,1971):

OTe({Swh) _, 5 OTesl{Sid)

s+ O(?) (7.5.11)

= O,adi; 7.5.12
5, = lag 8%, 80ij ( )
+({S
—-——J—(-LL}) = (C16ijbre + Cabirbje + C38i065k)Dpre
0Dgke
= Aaﬂ(trDﬂ)&j + 2[LaﬂDﬂ,’j (7513)
0Te;({S40})

N = 2ea5(Wpij — Waij 7.5.14
B(Wﬂkl - W.ykl)(Wﬂkl W'Ykl) € ﬂ(Wﬂ j W.y J) ( )

where use is made of the properties of the symmetric tensor Dg and skew-
symmetric tensor Wg. With the above substitutions into (7.5.11) and
using (7.4.31),, it follows that

3 ¥ 7-1
Te:({S6}) = D _[Map(trDp)8ij + 28apDgij] + 2 | an(Waij — Waij)
) ]
Y - Y .
+ ) tapighii + Y Oup dsbi; + O(€?) (7.5.15)
) ]

where Aug, Hag, €ap, tap; and Oup depend on the state properties {Sg}.
Combining (7.4.20) with the above result yields the stress tensor

Taij({sﬂ}) = _¢a(Pa + "—_"a)sij - Ea¢a BBZ): ¢a it2 Z eaﬂ(WﬂzJ 7ij)

-

+ > ap(trDg)6ij + 2pasDpij] + Z tap 156i; + Z Ougp $pbij + O(€?)
s 5 ]
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(7.5.16)

and the angular momentum condition (2.4.31) is reduced to
Myi; = Toij — Toji = 4 €ap(Waij — W) + O(e?) (7.5.17)
8
From equation (7.3.12) we can establish that
Ly = O(%) (7.5.18)

Repeating the above procedure for the representation of second order
isotropic tensors and using (7.4.40), the surface traction moment can be
expressed as

50ii({55)) = —baPa({Sso1)6is + 3 [Map(trDa)6i; + Bas D]
B

v-1 Y 4
+ 2 Tap(Wai — W) + D Kapighij + 3 Hap dsbi; + O(e?)
B B B
(7.5.19)
Similarly, using (7.4.33),, it may be shown that

Y 71
Eataii({Se}) = D _[Yas(trDp)ij + XasDpii] + Y Qas(Wais — Waij)
) )

i - ki .
+ Z Eaﬂ iﬂ&,’j + Z Zaﬂ ¢ﬂ5,'j + 0(62) (7520)
8 8

where the material coefficients Il,5, ®.4, Tus, Kus, Hag, ‘I’aﬂ, Xass las,
E,g, and Z,s depend on the equilibrium state properties {Sg,}

The third order tensors /\mﬂc and U,jr transform with the change of
frame according to (4.1.8). Thus, if we take t* =¢ and Q = —I, then
according to (4.1.8) and (6.10.1) in the state {Sg}

Xa({8g0}) = =Aa({Sg0}),  Ual{Sp0}) = ~Ual{Ss0})

from where it follows that

ioz({‘s’;ao}) =0, Ua({sﬁlio}) =0 (7.5.21)

Notice that a special case of the result expressed by (7.5.21), also follows
from (7.4.25), (7.5.8), (7.4.23), and (7.5.26). The tensor representations



7.5 LINEARIZED CONSTITUTIVE EQUATIONS 149

for X, and U, may then be written as follows

v -
Xaiik({Ss}) = D 6ijlas s p s + b5 5(Tak — Byk) + cT5 05 + 7 5 Da,k]
B
‘y =4
+ Z 55’9[“(21,;9 Ps;t+ b‘z’,ﬂ('{’ﬂj - "771') + cg,ﬂ b5, + dg,ﬂ ‘tbﬂ,j]
B

‘y -
+ Z 5J'k[a§,ﬂ l__’ﬂ,i + bg,ﬂ(iﬂi - "711') + Cg,ﬂ b5, + dg,ﬂ $p,] + 0(52)
ﬂ .

(7.5.22)
¥ _ - ~ -
Usiik({Sp}) = 3_ 6iilad s Po s + b5,a(Tsk — Gsk) + cp Opk + di s $t]
B
‘y _ - - i
+ 3 6iklag g Bip ; + b8 (B — By5) + B Bp,5 + 42 5 B3]
B

‘y _
+ Y 8iklag 5 P+ b3 5(Upi — i) + ¢G5 0p,i + g5 bl + O(€?)
3

(7.5.23)

An examination of the entropy inequality (7.4.19) and the above lin-
earized constitutive equations indicates that the error in_this mequahty
will be of O(e?) if the constitutive variables fa and ¢,€, are approxi-
mated within the same order of accuracy. For completeness and noting
that &,6,({Spo})=0 (cit. (7.4.33),) it may be shown that

éata({Ss}) ZTlﬂ¢ﬂ+ZT2ﬂ(trDﬂ + Z 7395 (trDsDs)
B<LE,6
-1

+ Z T4 86 (trDg)(¢rDs) + Z Tsas b7 r[(Ws — 7)(W6 - W,)]

B<6,6 B<L8,6
-1
+ Z Te, ,86 0ﬂ, 96 i+ Z Tz ﬂ&(vﬂt - '”71)('”51 '"71)
B<Lé,6 BL8.8
v v-1 -
+ Z Z Téfﬂ.s 0@,’(’55,‘ — ’5,7,') + 0(63) (7524)
B 6

An identical expression, but with different coefficients, may also be derived
for ¢,. Using (7.4.34),, we obtain

fa({sﬂ}) Zwo gipt Zwl 8 s + Z“’z s(trDg) + Z w3 gs(trDpDs)

B<6,6
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i 2
+ D wigs(trDp)(trDs) + 3 wigstr((Ws — W, )(Ws — W.,)]
<68 <o

v v-1

+ Z w6ﬂ696:P61+Zwuaspﬂ,a&z‘}‘Zzwgﬂgpﬂ,(vg, Doi)
B<L6,6 ﬂ §

+ Z“’g B8 Pﬂ isi Z Wiy y:) 9ﬂ 106 it Z Wi ﬂs("’ﬂz — Ui )(Usi — V)
BLéE6 B<L66

¥~1

Z le,ﬂa &p,i%s,; + Z Z w3 B8 9ﬂ i(Vsi — '"71 + Z(“’M N 9ﬂ iPs.i

B<6,6 s
¥ v-1

+ Z Z wis 35 98, i(Usi — V) + O(e’) (7.5.25)

The coefficients 7’s and w’s appearing in the above equations depend on
the state properties {S;,O}.

The constitutive equation for the Helmholtz potential may also be ex-
panded in series about the equilibrium state and use made of (7.4.26),
giving the following result:

"Z’a({sﬂ}) = "Z’a(;ﬂ’ aa, ¢ﬂ) + Ia(;ﬂa aaa ¢ﬂ)¢a,i¢a,i + 0(54) (7526)
From (7.4.8), the entropy of phase a is

- _ _a"Za _ aIa , , 4
5({Ss}) = T A O(c*)
_ _a"/;a 2
= % + O(€?) (7.5.27)

The internal energy &, is obtained from (6.12.8), (7.5.26), and (7.5.27), z.e.

- _ = a¢a _ 4
& ({Ss}) = aaa + In¢aitai — b a ¢a,¢a, + O(e*) (7.5.28)
&.({S5} = %, — ba ‘;‘ﬁa +0(e?) (7.5.29)

The equilibrium Helmholtz potential Jva(ﬁﬂ, 8., ¢5) is a property of the
mixture and should be determined from experiments, similarly as for a
single phase material where it only depends on the density and temperature
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and is referred as the “fundamental equation”, because its knowledge allows
for the determination of all other equilibrium thermodynamic variables (see
CALLEN,1960, for example). Another result which will become useful in
the next section is the combination of variables appearing in the entropy
inequality (7.4.19). This can be derived through the following arguments:

ba(pa + 7o) — j\fklcm¢a,m — @ofa — (5a¢akam)

4. _ =R
(7:4;5) a(pa + ‘I_l'a) + ¢C!Aakkm,m - akkm m ¢aﬂa

(7.5.19),(7.4.21)—(7.4.23),(7.5.26),(7.3.1) P.({Sx})é
Sl —4n B0 o

+ > [(Tag + ®ap)trDg + Kupip + Hag $g] + $a(Pa + Ta({Ss}))
3

(7.4.39),(7.4.40)in state {S5}

~¢aBa({S50}) + O(€?)

Y ¥ - ¥ .
S (Mag + Sap)trDs + 3 Kagis+ > Hagds + O(e2)  (7.5.30)
B B B

The restriction of material coefficients appearing in the above consti-
tutive equations may be determined by substituting these equations into
the entropy inequality (7.4.19). To simplify the algebra, however, we will
study the special case corresponding to no phase change and assume that

fo= O(e?).

7.6 Restrictions of Material Coefficients

of Linearized Constitutive Equations
Without Phase Change

For the no phase change situation,

Ca =0 (7.6.1)
and to reduce algebraic manipulations, it will be assumed that

= 0(e%) (7.6.2)

With these simplifications and making use of the constitutive equations of
the previous section in the entropy inequality (7.4.19), yields

VAVT 1 Y[ aq-p“i)ﬂ + ¢°‘(Haﬂ + 8u)trDp + (22 (an + Ba0)
fa b ;
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i - . ki
+D (tagis + Oag 83)ltrDa + D {Aag(trDp)(trDa) + 2ptap tr(DsDa)
5 5

+2eaptr[(W5 — WIYW,]} + O(®) > 0
(7.6.3)

where VAVY is defined by

> ~11

Y - Y
VAVT = [Z Vap P; T Z Cap(gi — Uyi) + Z Kap i+ Y Tap bp,]
3

%n

6 o 0o\ 0, - 0, .
+ase g Obels By D "’ B0 — )

Z(K sip+ Hap dg) + ): UailYasBs,i + €ap(Ti — Vi)

+A0p Pg,; + Mg 93,

¢a
(7.6.4)

The derivation of inequality (7.6.3) makes use of (4.3.16) and the fact
that the trace of the product of symmetric and skew-symmetric matrices
vanishes (D,i;W,:;=0). Moreover, noticing that

tr(DsDy) = l(trnﬂ)(trna)

+tr{[Dy — 2T \/_(trDﬂ)I][D _34 ‘[(t DI} (76.5)
5: eaptr[(W5 — W)W, ] = )fj Eaptr(WEW,,) | (7.6.6)
B B

where
éaﬂ=6aﬂ, ﬂ=1,...,7—1
(7.6.7)
y—1
€ay == D_ €ap
p=1
and substituting these relations into (7.6.3), gives

{VAVT} + {i [Pamz g«_pa Ps + i: (Iap + ®ap)lirDg}

pia
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I (T + ) + S (tap s + Oup $a)ltrDs}
a B
{3 6as(Aap + 2 pras)(1r D)D)} + {);: Veng bus tr(WIW,)}
B6 6
- 2paptustrl(Da — e (s - ey
8,6
+0(%) = Ry > 0 (7.6.8)

where the Kronecker delta 6,5 is defined as usual, i.e.

bos = 1, a=¢§
0, a#é (7.6.9)

The necessary conditions for the function R, in (7.6.8) to be positive
semidefinite are that each of the six terms which are enclosed by the brack-
ets {...} be positive semidefinite. These conditions are also sufficient if in
this inequality O(e3)=0

The condition

[¢“(naa +.0)+ Z(Laﬂ 75+ Ous $6)JtrDa > 0 (7.6.10)

for all D, requires
¢ (Haa + Qaa + ¢a aa + Zbaﬂ i3 + Z Oaﬂ ¢ﬂ =0 (7.611)
o 8 B#a

or, since 75 and &Sﬂ are independent variables in the constitutive equations
it follows that

b

Haa + @aa + ¢aoaa =0 (76.12)
lg=0; B=1...,9 (7.6.13)
Oaﬂ:O; ﬂzl,...,a—l,a+1,...,7 (7.6.14)
The condition
7 i
Z[pa 5, == Pg + 5 (na[, + B4p)]trDs > 0 (7.6.15)
ﬂ a
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for all Dg, B+ a, requires
o -
Pa¢a ’d) (Haﬂ + Qaﬂ) =0 (7.616)

which upon using (7.5. 26), gives

0
a¢a[ ¢a a— ¢a I¢C! -]Pﬂ a(Haﬂ + Qaﬂ) + 0(64 =0 (7617)

so that (consistent with (7.4.30),) for independent variations of g, B#a,
¢o, and @y, it follows that (within O(e?))
Mog+®ag=0; B=1,...,a—La+1,...,9 (7.6.18)
ValBor 0ar 96) = PalBar Oy b0),  La(Bg, Bas $5) = Lo(Prs By 60)
(7.6.19)

The condition

ki 2 ki
Z 505(Aaﬂ + gpaﬂ)(trDﬂ)(tng) = Z Bga(t'rDﬂ)(tTDg) Z 0 (7620)
B.6 Bs6

requires that all principal minors of B, be positive semidefinite (Sylvester’s
criterion). For a two-phase mizture, this requirement gives

2 2 2
B?g = 5a6('\a6 + 5#06) Z 0 /\11 + 5#11 Z 0 /\22 + 5#22 Z 0
(7.6.21)
[0 [o% 1 6% a \2 2 2
BnBzz - Z(Blz + le) = [601(’\01 + gﬂal)][5a2(’\a2 + 5#:12)]

1 2 2
_2[602(Aal + gﬂal) + 5a1(Aa2 + 5#02)]2 >0

giving for a=1 and a=2, respectively
2 2

Az + 5#12 =0, An+ 5#21 =0 (7.6.22)
Another condition in (7.6.8) requiring

X 3 + V6 3+6
> 2ptap bas tr{[Ds — (¢rD)Y[Ds — —3—(¢rDs)I]}
B,

T 3+6 3+6

= > G5 tr{ID; - f(trnﬂ)xnns 38D > 0

8.6

(7.6.23)
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yields the following results for a two-phase mizture
Cgs = 2”00 Z 0; K11 Z 0, H22 Z 0 (7.624)

and

1 1
0?10;2 - Z(Cflz + 0;1)2 = 2[‘0[15(112”0:2502 - 2(2#01602 + 2#0[25(11)2 Z 0

giving for a=1, and a=2, respectively
P12 = 0, B21 = 0 (7.625)

Combining (7.6.21), (7.6.22), (7.6.24), and (7.6.25) gives the following re-
strictions on the two-phase “viscosity” coefficients

2 2
g1 20, p2>0, A;> —5#11, Agp > —5#22
Hi2 = H21 = A]z = Az] =0 (76.26)

The condition

Y Y
Y 28apbastr(W W) =" D3, tr(WEWs) > 0
B B

requires that
D5 =200 20; en<0 (7.6.27)

where use was made of (7.6.7),. Furthermore,

D¢, Dg, —%(D;’z + D31)? = 2841601282002 — %(2&02501 + 26018a2)* > 0
gives
e12=0; €3 =0 (7.6.28)
Using now (7.6.7) it is thus established that
en=0, en=0, e=arbitrary (7.6.29)
The components of the vector V are

V=(Vh,...,V8, Vi,...,V5, ¥1,-.., ¥y
V¢la"-’ V¢'y’ (;51’"',&7’ ;la"";'y)
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and upon using (2.3.12), equation (7.6.4) may be transformed into the
following bilinear form:

VAVT = ):{—-— V85V g+ (4"“’5 5+ (8ap — —)7(,6)vo5 Vg

a

T = K \

+5L605V95-V5ﬂ + fﬁ&aavog-wﬂ + —ff-aag 515
Hag 9.
+ ¢ aﬂ¢5¢ﬂ + [( abf — pE)Aaﬂ pa¢a ¢ ( abd — 5g5)]Vpﬂ Vg

65 — Z)(Ens — 45 ):faa)"s Vg

+[(6as—”")Maﬂ paqsa (605 866)V b5} + O(c%)

(7.6.30)
where, for 8+# a, use was made of the result
0vYa 0vYq
boGeBs By _ o) (7.6.31)
Ps 9

which follows by utilizing (7.5.26) and (7.6.19). The necessary conditions
for VAVT >0 thus are

Ko H
—= >0, 2Z>0 7.6.32
6, Pa ( )

Y i
(8ap — lDf)(&ma — 683 bas) >0, a,B,0=1,...,7 (7.6.33)

from where the following restrictions on the material coefficients ¢,z are
obtained

a=f#7: faa 2 0
a=f=7: 577_2570, —1£7aS0
a#fB: gaﬂ Ssyﬂza&m
atfB#y: €3 <0 (7.6.34)

7.7 Two-Phase Structured Models Without
Phase Change

After summarizing the linear constitutive equations developed in the pre-
vious section, considerations will be given in this section to two-phase
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compressible, incompressible, dilute, and concentrated mixtures without
the phase change. This consideration is necessary in order to determine
the utility of the theory before developing more complex models.

7.7.1 Summary of the Linearized Constitutive Equations

The restrictions of the material coefficients (7.6.13), (7.6.14), (7.6.26), and
(7.6.29) produce a simple form of the stress tensor (7.5.16), i.e.

Toij = —a(Pa + Ta)bij — 2Pobalabaitas + [Maa(trDa)si; + 2ptan Dais]
+0aadabij + O(e?) (7.7.1)

where use was also made of (7.5.26). Because this stress tensor is symmet-
ric, the angular momentum condition (7.5.17) is reduced to

M.i; = O(¢?) (7.7.2)

The constitutive equation for the surface traction moment S, is given
by (7.5.19), and by making use of (7.6.18) and (7.6.12) it is reduced to the
following form

Saii = = o Pa({S50}) — Oaata(trDa) + Y Kapisg + Y Hagds + O(c?)
8 8 (7.7.3)

Since from (7.4.39)

Aakimm({S80}) = ~@aBa({Ss0}) + Sadaptmm ({S0}) + Galpa + o (({75504}))

it follows that by combining this result with (7.7.3), gives
Sak + Aakkmm = —aPa({Sg0}) + ba(Pa + Fal{Ss0})) — baBal{Ss})
+baatimin({S}) = Ol trD2) + 3 (KaaTa + Has 3g) + O(¢?)
" (7.7.5)

R
where the second order effect of A, ,, has been retained.

The interphase interaction force t, is given by (7.5.7) and it can be
written as

toi = (Maz — Mar)é1i — Moo(y + ¢2), — Ean(yi — Ba;) — Y Yas 05
B

2
—ZAaﬂ ;—Jﬂ,,'+ 0(€?) (7.7.6)
B
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with restrictions imposed on {,; as given by (7.6.34). For a saturated
mixture ¢, + ¢, =1, and specializing the result to incompressible phases
in a state of equilibrium {Sgo}, equations (7.7.6), (7.7.1), (7.3.4), (3.4.1),
and the momentum equation (3.4.2) yield

_¢a,i(Pa + 7=ra) - ¢a(Pa + 7=ra)ﬂ' + Z—’a¢ai’ai + (Ma2 - Mal)¢1,i
—(Patbeladaita,i)i =0 (7.7.7)

In an equilibrium single phase flow, the absolute pressure level is not re-
sponsible for flow and the pressure gradient is balanced by the body forces.
As seen from (7.7.7), however, this result should be modified for two-phase
mixtures where the pressure gradient can also be balanced by the volu-
metric fraction gradient expressing the structural property of the mixture.
Assuming that this is the case and noting that M, are the equilibrium
state properties, implies that

~00,i(Pa + Ta) + (Maz — Moy )p1i =0

or
My, — My =pi+7T1, My— Myp=p,+7 (7.7.0)
reducing (7.7.6) to the following form:

tai = Pai(Pa + Ta) — bai(B1i — 92:) — D Yas Bs, — Y Auppg;+ O(e?)
[ [
(1.7.8)

As in the single phase multicomponent mixture theories (BOWEN,1976)
and dispersed multiphase mixtures without structure (DOBRAN,1984b),
the interphase interaction force (7.7.6) accounts for the viscous drag and
diffusion of phases, £,;(V1 — V), and for the temperature gradient or Soret
effect. The dependence of T, on the volumetric fraction and density gradi-
ents reflects the multiphase mixtures’ structural characteristics.

The Helmholtz potential of phase « is obtained from (7.5.26), (7.6.19),
and (7.6.20), i.e.

"pa = %a(?’a’ 5aa¢a) + Ia(;aa 5a,¢a) ¢a,i¢a,i + 0(54)
= Ya(Pafas$a) + O(c?) (7.7.9)

This result shows that to a first order approximation the Helmholtz po-
tential is determined from the equilibrium state properties {Sgo} of the
mixture and that it satisfies the principle of phase separation (see section

6.13).
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The heat flux vector of phase o expressed by (7.5.6) contains terms
which are proportional to the temperature gradient (the Fourier effect)
and to the difference in velocities (the Duffour effect), as in single phase
multicomponent and dispersed multiphase mixtures (BOWEN,1976, and
DoBRAN,1984b). The dependence of q, on the volumetric fraction and
density gradients reflects the multiphase mixtures’ structural properties.
Notice that the thermal conductivity coefficient £, in (7.5.6) is predicted
by the theory to be positive (cit. (7.6.32);), as physically required for the
heat to flow along the decreasing temperature gradient. For a saturated
two-phase mizture, equation (7.5.6) can be written as

2 - 2 _ _ N
Qoi = — Z Kap 9ﬂ,i - (Pal - Fa2)¢1,i - Z Vag ﬁﬂ,,‘ - Cal(vli - 'U2i) + 0(52)
8 8 (7.7.10)

A constitutive equation for the reduced intrinsic stress vector f\fkkm is
obtained from (7.4.23), (7.5.26), and (7.6.19),. Thus,

=R _ _ = .
Aozlclcm = 2ﬁa¢a¢a,mIa(ﬁa,0a,¢a) + 0(54) (7711)

which can be used in (7.4.25) to establish a relation between A i, and

Zﬁa,;l, and the restriction on the material coefficients in the constitutive
relations (7.5.8) and (7.5.22), i.e.

- =R - -~ —
Aakkm = ¢‘1Aakkm + ﬁa¢a£€am = 2ﬁa¢iIa¢a,m
2 2 2
+D €5 hpm + 51 (Bim — Tam) + D €5 5 Ppm + O €55 Pom + O(7)
s ) s
2 N 2 - 2
= aS s Pam + 031 (Bim — o) + Y ¢t 0pm+ D d3 s bam + O(e?)
s 3 s
(7.7.12)

Thus, for a saturated two-phase mizture the following relations may be
established:
Eg,ﬂ = Y € = atp, €1 = b‘f,ﬁ a,f =1,2
21415 + 6113,1 - 5:1$,2 = d%,l - d%,z,
_232(1 - ¢1)2I2 + €:2$,1 - 5:2;,2 = df,l - df,z (7-7'13)
Equations (7.3.1) and (7.3.2), when combined with equations (7.3.8),

(7.6.1), (7.5.18), (7.5.19), and (7.5.22) where it is assumed that Xy x =
O(e?), yield restrictions on the coefficients ®,5 and T,s. Thus,

ba1Djk + BazDaji + O(€?) = 0, Tor(Wijk — Wo) + O(e)) =0; j#k
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(7.7.14)
from where
P11 =P12=93;,=9%5,=0, T;,=T5,=0 (7.7.15)
such that upon combining these results with (7.6.12) and (7.6.18), gives
My + 61011 =0, I3 =0, My +¢02, =0, ;=0 (7.7.16)

The following relations can also be established from section 7.3 and
the above constitutive equations for use in the balance equations (7.2.3),

(7.3.1), and (7.3.3).

i = —(j" i) = O(¢?) (1.7.17)
foji =0 (7.7.18)

Bokk = (Za) o (Pt %) —[( P Unsinlm = O") (1.1.19)

€a = (ﬁ),i ¢a’=\aRjji = Z" €7 ,(trDy — trD,) + O(°) (7.7.20)

LY

hakkm,m = xczlclcm,m - (ﬁa%;aﬁam),m = Xc!lclcm,m + 0(53) (7-7-21)

Usijkx = O(e®) (assumedto follow from (7.5.23)) (7.7.22)

Notice that in deriving (7.7.20) use was made of (7.3.9), (7.7.12), (7.6.1),
(7.6.2), and (7.5.10).

7.7.2 Two-Phase Modeling Equations

The constitutive equations of the last section can be combined with the
conservation and balance equations of section 7.3 to produce compressible
and incompressible models without the phase change. Given below is a
summary of these equations for the purpose of collecting them in one place.

Po + PaBaii =0,  Pa = Pap (7.7.23)
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f—’a'l\.}ai = —aij,j + pazai + t—ai - ( ) pa ¢a (2 (7.7.24)
¢a ¢a
3 g Pax
pala —_ 2pa¢_za + kaJth (7-7.25)

pa(ga%) = Sakk + xozlclcm,m - (ﬁa%;aﬁam),m + gakk (77.26)

ﬁa\ga = Taij'aai,j - qak,k + ﬁa';:a + éct (7-7-27)

az] ¢a(pa + 7ra)611 2ﬁa¢aIa¢a,i¢a,j + [Aaa(trDa)aij + 2ll'aaDaij]
+Oaa¢\506ij + 0(52) (7.7.1)

2 - 2 N
tai = Pa,i(Pa + Ta) — €ar(Dri — 2i) — ) Yap 0p, — D Aug Ps;+ O(e?)
B B

(7.7.8)

kojjii = (¢“) ; Unjji = O(€°) (7.7.17)

Sakk = —¢aPa({Ss0}) = Onada(trDa) + Y (Kapig + Hag d) + O(?)
_ B

(7.7.3)
Polokr =0 (7.2.10)
Rattmm({S50}) = —$aBal{550}) + budnimm ({Ss0})
+¢a(pa + Fal{Ss0}) (7.7.4)
Nk ({S60}) = 2P $alatharm + O(e%) (7.7.11)

Y

aakk:ﬁa(j;a> o+ Bai(Paiae ¢a> —((¢“) Uniim)m  (7.7.19)
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2 - 2 _
Qai = - Z Kap 0ﬂ,i - (Pal - I‘a2)¢1,i - Z Vag ﬁﬂy,‘
B B

—Car(D1i — D2s) + O(€?) (7.7.10)

€a = (ﬁ),i ¢a/=\fjji Yo (trDy — trD,) + O(®) (7.7.20)

—E€
N ¢a 1,1

Combining (7.7.25), (7.7.26), (7.7.4), (7.7.17), and (7.7.18) gives an al-

ternate form of the equilibrium moments equation (7.7.26), i.e.

Paiate = Batk — daBa({Ss0}) + da(pa + Fal{Ss0}))
+ 6o datkmm({S0}) — Patada(trDa) + O(c?) (7.7.28)

and upon substituting for S,k from (7.7.3) it follows that
Baiaba = —0aPal{Ss0}) + ba(Pa + Ta({Ss0})) — daBal{Ss})
=R 2 - .
+dadaktmm({S60}) — Oaada(trDa) + Y (Kapis + Hap é5)
B

—Poia®a(trDa) + O(e?) (7.7.29)
R

Notice in the above equation that the second order effect of j\akkm,m is

retained. If this effect is ignored, then according to (7.4.39)
Ba({S50}) = (Pa + Fa({Sgo})) + Pa({Sp0) = 0

From this result it is easy to see that the difference in equilibrium pres-
sures of two phases is related to the difference in the configuration and
interfacial pressures. Since the difference in interfacial pressures may be
ignored in equilibrium, it follows that in this state the difference of con-
figuration pressures can be related to the surface tension and curvature of
the interface.

7.7.3 Examples of Two-Phase Models

7.7.3.1 SATURATED AND CONCENTRATED MIXTURES WITH
INCOMPRESSIBLE PHASES AND NEGLIGIBLE INERTIAL EFFECTS

Many two-phase flow mixtures can be assumed to be saturated and phases
incompressible. For incompressible phases, p, and p, are constant and the
continuity equation (7.7.23); is reduced to

$o + ¢o (trDy) =0, a=1,2 (7.7.30)



7.7 TWO-PHASE STRUCTURED MODELS 163

With the additional assumptions of saturation and negligible inertia, ze.

dr+dr=1, 1,=0; a=1.2 (7.7.31)
the balance equation (7.7.29) is reduced to the following form:
\ 1 =R 1 . \

P, = Pa — ﬂa + Oaa¢a?¢_ ’\akkm,m + E"(Hal(}bl + Ha2¢2) (7‘7-32)

where for an incompressible phase we set 7, =0. The saturation constraint
(7.7.31); implies that

¢ = —¢1 + (V1 — ¥2)- Ve | (7.7.33)

1= =1 + [ — V2 + (Vi) (%2 — )]V,

(V) + V(1) + V(V)(¥2 — 91)|(F1 — ¥2) (7.7.34)
Using (7.7.30), (7.7.33), defining in (7.7.11)
Ao = 25 bola (7.7.35)

and assuming that
P =P (7.7.36)
it follows from (7.7.32) that the pressure difference between the phases is

pr—p2 = B — B2 — (A1 + A2)b1,m)m + (On1 + Hy — Hyz) trDy
H Hy . .
—(022 - H21 + H22) tTDz — (—-—1—2 - —21)(\’1 - Vg)'v¢1 (7737)
¢ ¢2
This result is similar to a result obtained by PASSMAN et al. (1984) in their
theory of mixtures (equation 5C.7.11') for saturated and concentrated in-
compressible mixtures. It shows that the difference in phasic pressures
results from the intergranular forces represented by 8 — 8, nonhomoge-
neous particle distribution represented by the volumetric fraction gradient
V ¢,, intergranular friction represented by the viscosity coefficients B; and
B2, i.€.

By, = —(0Oy1 + Hyy — Hy,) (7.7.38)

B; = —(O2; + Hy, — Hyy) (7.7.39)

INotice, however, that this equation contains sign errors in the third, fourth, and fifth terms, if one
assumes the validity of (5C.7.10).
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and diffusion of phases represented by ({'1 — V3).
Solving for the pressurein (7.7.32), using (7.7.33), and substituting mto
(7.7.1) yields the phasic stress tensors

T, = —{1(Pr + B1) + [2¢:011 + ¢1(H11 — Hyz2) — A]trDy
—V (141 V) + [Hia(vy — v2)- Vi ]I+ 2p1.Dy — 4;(V- V)1
—5, 0 1V $, Vi, + O(e?) (7.7.40)

T, = —{¢2(P2 + B2) + [2¢2022 + ¢2(Hap — Hz1) — Ag2]irD,
—V($2 A2V ) + [Hyy (V1 — ¥2)- Vi ]I+ 2p5:D; — A5(V - Vo)1
— P02 LV Ve, + O(e?) (7.7.41)

These results resemble those obtained by PASSMAN et al. (1984) (equa-
tion 5C.7.12). They contain the second order effects of diffusion and con-
centration gradients, and do not necessarily satisfy the principle of phase
separation.

7.7.3.2 SATURATED AND DILUTE MIXTURES WITH
INCOMPRESSIBLE PHASES AND NEGLIGIBLE INERTIAL EFFECTS

Saturated and dilute mixtures with incompressible phases and negligible
inertial effects may be modeled using equations of section 7.7.3.1, with
¢o << 1 for the dilute phase. A saturated and dilute mixture may have
significant inertial effects if the grains or particles are large, and produce
significant particle concentration regions where the diluteness assumption
may break down. The a prior: estimation of the importance of inertial
effects in the field equations requires more detailed knowledge of the prob-
lem, such as the geometry and flow characteristics (laminar and turbulent

flow).

7.7.3.3 SATURATED AND DILUTE MIXTURES WITH COMPRESSIBLE
PHASES AND THE RAYLEIGH-TYPE BUBBLE EQUATION

For dilute mixtures, we may set in (7.7.29)

Mim = Aatam =0,  Aq = 2Pufals =0 (7.7.42)

Assuming the equality of interfacial pressures (P, = P;), using (7.7.33),
(7.7.34), (7.7.42), and ignoring the diffusion of phases (¥; = ¥,), the fol-
lowing result is obtained from (7.7.29)

Fi—F=f— Bt ¢1(”1~“ + M) + Oy, (trDy) — Osy(trDy)
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—zl({‘;‘l1 IZ‘) +22(% - %) - —'[Hn Hy+ 2 &, (Ha — Ha)]
+£—1ﬁﬂ1q\sl(trD1) + ;};ﬁzizqﬁl(tng) (7.7.43)

This equation can be reduced into the Rayleigh-type bubble equation (cit.
VAN WIINGAARDEN,1972) by assuming: (1) spherical bubbles (phase 1)
of radius R, (2) a constant number density of bubbles Z, and (3) that the
liquid phase inertia can be computed from the flow field around a single
bubble, i.e.

1

547rR3ﬁ1 = constant (7.7.44)
3, _
i Z = constant (7.7.45)
i . (7.7.46
4w RZ -7-46)
From (7.7.44) it follows that
P _,R
= = —3—= 7.7.47
P R ( )
whereas from (7.7.45) we have
& _ R
= =3— 7.7.48
5 R (7.7.48)
The conservation of mass equation (7.7.23); yields
Po _ $a
trDy = -2 — — 7.7.49
pa ¢C¢ ( )

such that when combined with (7.7.33), (7.7.47), (7.7.48), and with ¥, = ¥,,

gives

trD, =0, trD;= ’—’2 Ll (7.7.50)
>
Substituting the above relations into (7.7.43) results in the following equa-
tion
piz 3

Ty — T2 =Py — ,32+p2RR(— —h}ﬁ
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R
-3— i;&(022 + Hyy — Hyy) + Hyy — Hyg)
R ¢
Ky Ky, -, K Ky f) 2
—iy(— — — — — = RR )
Mg T T ) TG R Om)
+2szR(—— 430 3_f’1“ ) (7.7.51)
243 po ?
Since the mixture is assumed to be dilute and bubbles sufficiently small,
h=1—¢<<1 (7.7.52)
5, 3
= 1 T.
5 << (7.7.53)

it follows from (7.7.51) that

L Y 7. S S
‘f—fl—‘ffz:ﬂl—ﬂ2+ﬁgRR+2ﬁ2RR+—sz+l*—%g(ﬁzRR_Ozz)
2

R
(7.7.54)
where
3
By = _Z[¢1(022 + Hyy — Hy) + Hyy — Hyp (7.7.55)
is an effective viscosity coefficient, and
: + Ky Ky Kzz K,
7= —y(— — — — - —= 7.7.56
G~ T (7-7.36)

represents an effective inertia coefficient for liquid and bubbles.

Equation (7.7.54) is similar in form to the Rayleigh’s bubble equa-
tion with dissipation (VAN WIINGAARDEN,1972) +f: (1) *=0; (2) p, =
constant; (3) 1 — B2=20/R, with o being the surface tension; (4) p3= .
being the liquid viscosity; and (5) the factor 2 multiplying the inertia term
RR being replaced by 3/2. This difference of factors multiplying the inertia
terms may be associated with the averaging procedure used to establish
equation (7.7.54). The viscous dissipation in liquid and gas is accounted
in (7.7.54) by the viscosity coefficient p}. The positivity of this coefficient
may be established from (7.7.40) and (7.7.41) by setting?

Actcz - ¢a(2oaa + Haa - Haﬂ) + %#aa 2 0; ﬂ # a (7-7-57)

2This condition is necessary but not sufficient for (7.7.40) and (7.7.41) to retain a formal similarity
with the single phase incompressible stress tensor form when the structural effects of the mixture are
negligible, since in that case (7.7.32) shows that Pa + Ba X pa.
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According to (7.6.21) we may select Apy + 2faa /3 =0 in order for these
equations to retain a formal similarity with the corresponding stress tensor
equation of single phase flow when the structural effects of the mixture are
“small”. This necessary condition thus gives from (7.7.57)

_Oaa > Oaa + Haa - Haﬂ; ﬂ ié a (7-7-58)

and using (7.6.32), it is established that
Osa <0 (7.7.59)

if the crosscoupling terms Hy, and H,; are ignored. From these results it
may be, therefore, permissible to state that

p; >0 (7.7.60)

The explicit effect of inertia ¢* appearing in (7.7.54) has not been dis-
cussed in the literature in the Rayleigh-type bubble equations. The com-
pressibility of the liquid phase in this equation is represented by the term
containing 52 and it has been discussed previously by DRUMHELLER, KIpPP
& BEDFORD (1982). This term represents the effect caused by the prop-
agation of pressure waves in the liquid and it does not appear to have
been quantified by experiments due, possibly, to the inability of measuring
instruments to resolve the liquid phase pressure fluctuations.

The relative motion between the phases can have a significant effect on
the wave propagation or bubble motion, and it should be studied using
the general forms of (7.7.29), (7.7.33), and (7.7.34). The “bubble equa-
tion” (7.7.54) contains the difference of configuration pressures (8, — ;)
which may be associated with the surface tension effect in the equilibrium
state {S;,O} as discussed above. This association is, however, somewhat
artificial, since the surface tension effect should enter into the theory more
explicitly through a nonlocal theory of constitutive equations which will
not be discussed in this book.

PASSMAN et al. (1984) claim to recover the Reyleigh-type bubble equa-
tion with dissipation in their theory of mixtures as discussed in chapter
5. A close examination of the derivation of their bubble equation reveals
an error in their second and third equations following (5C.7.18), where 8
should be 4. Consequently, their bubble equation involves the coefficients
2 multiplying 5,RR and 3 multiplying 7,RR, instead of 1 and 3/2, re-
spectvely, as they claim. Moreover, their derivation of the bubble equation
rests upon their results (5C.7.14) and (5.C.7.15), s.e.

51 ¢17:1 = 752 ¢2i2
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ﬁl‘ﬁl;l = ﬁ2¢2;2 + 51¢1’.1V'({’1 - ‘72)

which are claimed to follow from (3.4.21) when ¢=¢; + ¢,. These results
are not clear, but by setting in (3.4.21) ¥{2) = ¢o8un, Vi = with ¢=0, it
may be possible to claim these results, zf indeed v,,,, = qS!

7.8 Discussion of Results

The linearized constitutive equations developed in this chapter have prac-
tical limitations. In particular, the drag coefficient {4y in (7.7.8) is also
known to depend on |V; — ¥,| which can be predicted by a theory of non-
linear constitutive equations where the coefficients multiplying the inde-
pendent variables in constitutive equations depend on invariants of these
variables. From (7.6.34), £;; >0 and & <0, as it is physically required
in (7.7.6) for the drag of phase 8 to oppose the motion of phase a. More-
over, the expressions for the viscosity and thermal conductivity coefficients
(equations (7.6.26) and (7.6.32);) have a formal similarity with the single
phase flow, and depend, in general, on temperature, density and volumet-
ric fractions of all phases in the mixture. In the first approximation and
involving only the dilatation, the theory predicts that the angular momen-
tum tensor M, is symmetric (cit. (7.7.2)). This result would be, of course
expected if we were to volume average (T7; (od) _ 0‘6)), with T ) sym-
metric, and argue that the averaged stress tensor T can be completely
reconstructed from the information of its local macroscopic counterpart. As
discussed by DOBRAN (1984a), it is, however, approprite to expect that
the global (averaged) theory of mixtures contains information inherent of
its global structure which cannot be completely realized by a contruction
from its local macroscopic information.

The manner in which the interfacial pressure is introduced into the
postulatory theory of mixtures is criticized in section 6.12.2, since it is un-
physical to define, in general, a single interface pressure for more than two
phases in a mixture. In the present theory of mixtures, the interphase pres-
sure is identified with the surface traction pressure P, defined by (7.4.40).
This pressure is defined for each phase in the mixture and does not produce
the unphysical result noted above.

According to (7.4.42), the difference of configuration pressures (8, — 33)
can be related in the equilibrium state {S;;O} to the difference of phasic
pressures (p, —pg), which in turn is related to the surface tension between
the phases and curvature of the interface (see also the discussion at the end
of section 7.4). In this sense it is, therefore, appropriate to relate (8, — 5)
to the average surface tension force and curvature, in general.
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The recovery of the Rayleigh-type bubble equation (7.7.54) is an im-
portant result in this chapter for it gives credibility to the simple theory
without the rotational effects. The assumptions leading to this equation
starting from (7.7.29) are physically reasonable. The Rayleigh bubble equa-
tion has the coefficient 3/2 multiplying the inertia term, whereas in (7.7.54)
this coefficient is 2. This difference in coeflicients is not large, but it is suf-
ficiently important to be noted, although arguments can be presented (as
stated in the previous section) for possible reasons of this discrepancy.
The last term on the right of equation (7.7.54) represents the effect of the
liquid phase compressibility which is shown to be affected by the bubble
motion and liquid viscosity. The former effect has an opposite sign to
the corresponding term in the bubble equation of DRUMHELLER, Kirp &
BEDFORD (1982) who showed that liquid pressure variations can be sig-
nificant at early times during the initiation of pressure pulses in bubbly
liquids, and that at later times the liquid pressure rapidly oscillates about
the gas pressure. When comparing the gas pressure oscillation results with
the transient data of air, carbon monoxide, and helium bubbles in water,
DRUMHELLER and co-workers obtained good comparisons in some situa-
tions and associated the disrepancies of this comparison with the breakup
of bubbles and lack of including the relative motion between the liquid
and bubbles in their bubble modeling equation. According to the present
result (7.7.54), the pressure propagation mechanisms in bubbly liquids ap-
pear to be accounted in a more complete manner than in previous models,
as attested by the additional effects of bubble and liquid inertias, and by
the liquid viscosity /compressibility coupling. For small amplitude distur-
bances and phase velocities removed from the natural frequency associated
with the oscillation of bubbles, the effects of inertia, compressibility, and
heat transfer are probably not too important, and a simple bubble model
may suffice. Large amplitude pressure disturbances may, however, require
the use of (7.7.29) instead of (7.7.54), and the solution of this equation
together with the inertia equation (7.7.25), continuity equation (7.7.23),,
and the momentum equation (7.7.24). Since the transfer of heat between
the gas and liquid can result in an important dissipation effect, the prop-
agation of large amplitude waves in bubbly liquids may also require the
use of energy equation (7.7.27). For the reasons discussed in chapter 1,
the time-averaged multiphase model is not appropriate to model rapidly
changing phenomena and it does not appear to recover the Rayleigh-type
bubble equation. Consequently, this model appears to be inferior to a
theory of multiphase mixtures based on the volume averaging approach.

The theory of granular materials of GOODMAN & CoWIN (1972) pre-
dicts a failure criterion in accordance with the Mohr-Coulomb theory of
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limiting equilibrium (SOKOLOVSKI,1965). This criterion states that yield-
ing or granular “flow” will occur at a point on a plane element where the
shearing stress S exceeds a certain value of the normal stress N, with the
coefficient of proportionality depending on the cohesion ¢ and the critical
static angle of internal friction ©; of the bulk solid, z.e.

S =c— NtanO; (7.8.1)

The yield criterion (7.8.1) follows from a stress constitutive equation,
and for the case of incompressible grains it was shown by CowIN &
NuNzIATO (1981) that the GOODMAN and COWIN’s theory does not pre-
dict the yield criterion in the form of (7.8.1). SAVAGE (1979) has also
questioned the general validity of (7.8.1) and notes the difficulties of estab-
lishing the parameters ¢ and ©;.

The theory of mixtures discussed in previous sections may also be exam-
ined for the existence of a yield criterion similar to (7.8.1). Towards this end
it is necessary to invoke the equilibrium state of the mixture {Sgo} and ex-
amine the constitutive equations (7.7.1), (7.7.4), (7.7.11),(7.7.12), (7.4.22),
(7.5.26), and (7.6.19);. By combining (7.7.4), (7.7.12) and (7.7.11), and

ignoring the thermal effect due to £e,, it follows that the pressures can be
expressed as

¢a(pa + ;?a) = ¢aﬂa + 2ﬁa¢aIav¢a'v¢a (782)

which upon substitution into the stress constitutive equation (7.7.1), gives

Taij = _(‘}baﬂa + 2ﬁa¢aIa¢a,k¢a,k)5ij - ﬁaanIaan,ian,j (7.8-3)

On a plane with normal n, the stress force is given by T,n, i.e.

Tan = _(¢aﬂa + 2ﬁa¢aIav¢a'v¢a)n - ﬁaanIaqua(vqsa'n)
(7.8.4)

whereas the normal stress N, is found from

Na = (Tan)'n = _(¢aﬂa + 2ﬁa¢aIav¢a‘v¢a) - (ﬁaanIa)(qua‘n)z
(7.8.5)

Since the square of the shearing stress S, and the normal stress N, is equal
to the square of the stress force, we obtain, using (7.8.4),

S2 + N2 = (Ton)-(Tan) = (¢aBa + 2o bata Vo'V ds)?
+2(¢aﬂa + 25a¢aIav¢a'v¢a)ﬁaanIa(qua‘n)2
+(ﬁa¢aIa)2(v¢a'v¢a)(v¢a'n)2 (786)
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Sa

~._(Ng.Sq)

Roq

Nog

Figure 7.1: Illustration of Mohr-Coulomb criterion for limiting equilibrium on a Mohr
circle diagram

Completing the square in the above equation, using (7.8.5), and defining

Nog = —(¢afe + 2p00ale VeV da) (7.8.7)
R0}, = (Pobala)’ (Vo V ¢a)(Van)® (7.8.8)

gives
S2+ (N, — No,)? = Ro?, (7.8.9)

a shear/normal stress relation suitable for representation on a Mohr circle
as shown in Figure 7.1. This circle consists of radius Ro, and it is located
on a horizontal (normal stress) axis at a position No, units displaced from
the origin. To prove the existence of the traditional Mohr-Coulomb relation
(7.8.1) it is necessary to eliminate 3, in (7.8.7) using (7.4.22), (7.5.26), and
(7.6.19)1, 1.6,

_ 89,
Ba = Fathl afs + 5 VY dn) (7.8.10)
Substituting this result into (7.8.7) yields
O

Nog = —potalpar + Vi V¢a(¢a = 4 2L,)] (7.8.11)

O0¢a 3¢a
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Eliminating V ¢,V ¢, using (7.8.8) gives

Bzza Ro,

where 8¢, /0n is the normal derivative of ¢,. If m designates a unit vector
in the direction of V¢,, i.e.

a":;")2] (7.8.12)

No, = _?P-a‘»ba[qsa + (‘Iba =~ + 21, )(— ) /(

V ¢a

= = 7.8.13
then using this equation and (7.8.8), it can also be shown that
Ro 1
V¢o Voo = ——r—— 8.
¢V = L. mn (7.8.14)

such that (7.8.11) has an equivalent expression of the following form:

~

Rog, 1

N (04 (04 (04 Q) - ——— ‘8.1
Fubelbe gl + (22 2L L) (1815)
or
Ro, = —No, 8in® + ¢ cos® (7.8.16)
where
5in@® = ﬁ ¢ cos® = —p, ¢t (;p Ssin®  (18.17)

If m'n is independent of Ro,, (7.8.16) can be represented in terms of S,
and N, by the use of formulas

Sa Noa - Na
ROa = -(:'_0—3(—')., tan@ = _T (7.818)
as shown in Figure 7.1 and which satisfy (7.8.9). Thus, it follows that
S, =c— N,tan® (7.8.19)

which is similar to the traditional Mohr-Coulomb yield criterion (7.8.1).
The condition that m'n be independent of Ro, may occur when the vol-
umetric fraction gradient is normal (m-n = 1), irrespective of whether or
not the phase is compressible or incompressible. The present theory of
mixtures contains, therefore, the Mohr-Coulomb yield-type criterion only
under special circumstances of normal-volumetric-fraction-gradient.
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The yield criterion (7.8.19) should not be interpreted as an equation of
static equilibrium of the mixture (for it is the product of a rate-dependent
theory), but rather as a limiting form of the stress tensor (7.7.1) when the
medium has just come to rest (D — 0). That is, the condition (7.8.19) is
too special to represent the static equilibrium of mixtures in general, since
this state should also be represented by the elastic properties of the medium
(see chapter 6). As SAVAGE (1979) has also pointed out, the constitutive
equations suitable for flowing materials need not necessarily be appropriate
to describe the states of static equilibrium, as in the case of most theories
of liquids which are inappropriate for modeling the solids. The constitu-
tive equations can be, of course, constructed in terms of rate-dependent
and rate-independent constitutive variables as discussed in chapter 6, but
only at the expense of greater complexity of the theory. For these reasons,
it is only appropriate to consider the validity of the rate-dependent theory
of this chapter for nonzero flow regimes where the dissipation of mechan-
ical energy is by particle-particle collision rather than by particle-particle
rubbing, with the angles ©; and © in equations (7.8.1) and (7.8.19) being
different. HANES & INMAN (1985a,b) associate © with the critical dy-
namic angle of internal friction which, as shown by BAGNOLD (1956), is
less than the static angle ©; by a few degrees. The granular experiments
of HANES and INMAN involving glass beads and sand in air and water not
only demonstrate the dependence of the dynamic angle of internal friction
on the mean particle diameter, density, and interstitial fluid, but also on
the particle concentration at the yield plane of the flow. In these rheological
experiments, the particle concentration varied linearly across the granular
shear region and approached a constant value below the yield plane, where
no flow of granules occurred. However, no particle concentration gradients
at the yield plane were measured to justify the prediction of (7.8.19).

The experiments of BAGNOLD (1956), SAVAGE and coworkers (1979,
1983,1984), and HANES & INMAN (1985a,b) show that at high shear
rates, or grain inertia regime, the stresses in granular flow are primar-
ily transmitted by the intergranular collisions and depend quadratically
on the mean shear rate. At low shear rates or in a macroviscous flow
regime, however, the stresses are primarily transmitted by the interstitial
fluid and depend linearly on the mean shear rate or velocity gradient and
properties of the fluid. In an attempt to account for these exprimental
observations, SAVAGE & COWIN (SAVAGE,1979) extended the theory of
GooDMAN & CoWwiIN (1971,1972) to incorporate the nonlinear shear-rate
effects through the dependence of the coefficients of independent variables
in the constitutive equation for shear stress on the invariants of these vari-
ables. More recent models of granular flow are, however, constructed us-
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ing the kinetic theory model, whereby the field and constitutive equations
are derived for idealized granular materials consisting of uniform, rough,
and inelastic spherical particles with binary collision modeling (SAVAGE
& JEFFREY,1981; JENKINS & SAVAGE,1983; LUN et al.,1984; LUN &
SAVAGE,1987; JENKINS & MANCINI,1987). In these theories, the kinetic
energy of random motion of grains plays the role of internal energy with
which 1s associated a “grain temperature”, whereas the effect of incor-
porating the rotary particle inertia into the theory results in producing a
non-symmetric stress tensor (LUN & SAVAGE,1987). Although the kinetic
theory results may adequately represent short time duration collisions be-
tween particles, they do not account for long time frictional contacts which
can occur even in rapid granular flows in the vicinity of a solid boundary.
JOHNSON & JACKSON (1987) allowed, therefore, for the superposition of
these short and long time effects and proposed constitutive equations for
shear stress, total energy, and the total heat flux to be used in the momen-
tum and energy field equations.

The kinetic theory or, more generally, the statistical mechanics has a po-
tential of producing the macroscopic field equations and clearly identify the
transport properties and phenomenological coefficients in the constitutive
equations. For dense multiphase suspensions, the binary collision modeling
is not adequate and should involve multiple collisions between grains and
account for the particle nonuniformity and nonrigidity. At the present, the
kinetic theory is useful in providing detailed information for very idealized
granular flows which exclude the interstitial fluid from playing a significant
role.

A fully linear theory of constitutive equations is, in general, not ade-
quate for modeling multiphase flows and can be extended to account for
nonlinear phenomena by using the tensor representation theorems of sec-
tion 4 of the appendix. The simplest extension of the linear theory is to
allow the phenomenological coefficients in the constitutive equations to de-
pend on the invariants of independent variables. Thus, in the equation for
stress tensor (7.7.1), the set of phenomenological coeflicients

{Sa} = {Ia, Aozoz, Hoa) Oaa} (7.8.20)

can be allowed to depend on the following invariants of independent con-

stitutive variables:

{Sa} = {¢s, 85, b |V bal, trDa, trDL, tr[(V o)’ Dal, tr[(Va) D2}
(7.8.21)

producing in this manner a nonlinear dependence of the stress tensor on
the strain rate. Further nonlinear effects into the stress tensor can be
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introduced by such terms as (V@,)?D, and D? from the full tensor rep-
resentation form of (7.7.1), using equation (A.42), or more generally by
using equations (A.42) and (A.44) of the appendix.

The solutions of conservation and balance equations depend on the pre-
scribed initial and boundary conditions. By considering a simple granular
flow it is apparent from the particles’ point of view that they may stick
or slip relative to a surface. The continuum theory of mixtures does not
deal with the details of granules close to the surface and may need a rec-
onciliation with the particles’ point of view in order to supply physically
reasonable solutions. HUTTER et al. (1986a,b), using the modeling equa-
tions of JENKINS & SAVAGE (1983), studied numerically chute flows with
different types of assumed boundary conditions and showed that some of
these conditions may not even produce solutions, let alone produce physi-
cally meaningful results.

Another characteristic of a rate-dependent theory is that it cannot
model fast waves associated with the elasticity of the granular material,
but only slower waves associated with the dilatancy (changes in the volu-
metric fraction) of the medium. As noted by Cowin & NunziaTo (1981),
dilatant waves have been observed by a number of investigators, such as in
the gravity flow of dry powders and bulk solids, fluidized beds, etc.

7.9 Application of the Theory to Shearing Flow
of a Fluid-Saturated Granular Material

Fluid-saturated granular materials occur naturally in many situations where
the suspension of particles may be dilute or concentrated. In this section
we will examine a shearing flow whereby the motion of a suspension is
achieved by placing it between two parallel plates, one of which is held
stationary and the other of which is moved at a constant speed (Figure
7.2). In a single phase Newtonian flow situation, the velocity profile be-
tween the plates is linear, whereas for the suspension flows this is not true,
even if considerable simplifications are made in the field and constitutive
equations as will be shown below.

For an isothermal, saturated, incompressible solid and fluid phases, and
inertionless (3, =0, a=s, f) granular material it follows from (7.7.30) and

(7.7.31) that

BB"Z’ + V-(¢sV,) =0 (7.9.1)
% 4 v. (%) =0 (7.9.2)

ot
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Figure 7.2: Geometry of a two-phase shear flow between parallel plates

¢s +és=1 (7.9.3)
whereas from (7.7.37) and (7.7.32) it follows, respectively, that
Pe=Bs— By =ps — ps + (2(as + as)dsm)m (7.9.4)
m=—Pr=—p;+ B — (2016sm)m (7.9.5)
where it is assumed that
Hys=0, 0,=0; af=s,f (7.9.6)

which is consistent with (7.6.32); and (7.7.59). In (7.9.4) and (7.9.5) the

coefficients o, and o  are defined as follows
2a, = A,, 2af = Af (79.7)

and P.=p8,—0; represents the capillary pressure. The momentum equation
(7.7.24) is reduced to

p-s'l\;si = Tsij,j + pszsi + {si (7.9.8)

prvgi = Tpiji+ Prbyi + ¥y (7.9.9)
where the constitutive equations for stresses are obtained from (7.7.1), and
interphase momentum sources from (7.7.6), i.e.

Tsij = _¢sp35ij - 2as¢s,i¢s,j + 2¢sl-l'stij (7-910)
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Trij = —dsprbij — 205 ¢5,i5,5 + 20515 Dij
Zsi =—-7 ¢s,i - D('Esi - 5_[1')

tyi = —m ¢si — D(V5i — 0ai)
The above equations contain the assumptions of

Actc! = 0, Haa = ¢a#a; a =8, f
Msf — Mss = -7

Mj;— My, ==
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(7.9.11)
(7.9.12)

(7.9.13)

(7.9.14)
(7.9.15)

(7.9.16)

whereas the drag coefficient D is positive as required by (7.6.34) 4, i.e.

D=£ss=-‘ff320

(7.9.17)

Combining the above field and constitutive equations produces the fol-

lowing modeling equations:

96 L

ot + V'(¢svs) =0

0 -

L+ VA (4r%) =0
¢s + ¢_f =1

P.=2V:[(a, + af)V¢S] + Ps — Py

T =—p; —2V-(a;V;) + B;

PeVe = =V ($ps) —2V (0, V$, V) + V-[pts(VV, + V)]

+psb, — 7V, — D(¥, — %)

(7.9.1)

(7.9.2)

(7.9.3)
(7.9.4)

(7.9.5)

(7.9.18)

prvs=—V(dsps) — 2V-(a; VsV ;) + Ve [sp;(VF; + VT

+psby — V¢ — D(¥; —¥,)

(7.9.19)
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Ps = $sp,, Py =sP;, P, =const., p; = const. (7.9.20)

Equations (7.9.1)-(7.9.5) and (7.9.18)-(7.9.20) are formally identical to the
equations proposed by PAssSMAN & NUNZIATO (1981) to study flows of
fluid-saturated granular materials. They also assumed that p,(¢,), ps(¢y),
P.(¢;), and B;(¢;), which may only be true in special circumstances in
the flow of granular materials. The viscosity of the solid is assumed to be
governed by the following expression:

Bs

Ps o — a7 (7.9.21)
where ji, =constant and p,, denotes the maximum value of ¢,, namely ¢,, =
0.74 for a hexagonal close-packed configuration of solids. The constitutive
equation (7.9.21) has the property that g, — oo as ¢, — ¢, which
can be physically visualized as representing a “locking” phenomenon. As
the particles come close together they become more closely interlocked, so
that it becomes more difficult to move one particle relative to the other.
SAVAGE (1979) also proposed a constitutive equation for p, which is similar
to (7.9.21).

Assuming that pg, a,, a5, and D are constant and that the capillary
effects are negligible (8; = P, = 0), PASSMAN & NUNzIATO (1981) used
the above modeling equations to analyze a shearing flow as illustrated in
Figure 7.2, with solid and fluid velocities given by

v, = (vs(¥),0,0), v; = (vs(y),0,0) (7.9.22)
and
¢s, b5, Ps, D5, and w as functions of y only (7.9.23)

The distance between the plates is £ and the flow is in the z — y plane.
The equations governing this flow situation are, therefore, as follows:

b+ dr=1 (7.9.24)
d’¢,
2(as + ay) d;i +p,—ps=0 (7.9.25)
d’¢
x=—p; — 2ay dng (7.9.26)
d d¢3 2 d¢3 =

— = = 9.2

dy[2as( dy) + ¢opa) + 7 2y T 98P =0 (7.9.27)
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doy
—-[2 (o PLY + bups) + 7 + by = 0 (7.9.28)
dv,
(¢sﬂs ) D('Us - 'Uf) =0 (7.9.29)
dvj
(¢fﬂf — D(vs —v,) =0 (7.9.30)

with p, given by (7.9.21)

The seven modeling equations (7.9.24)-(7.9.30) contain seven unknowns
@sy @5y T, Psy P, Vs, and vy, and require boundary conditions for a solution.
PAssMAN and NUNZIATO chose to specify different values of solid fractions

¢s(0),  ¢.(£) (7.9.31)
and for the velocities assumed the no-slip condition, i.e.
v,(0) =0, v,(€) =1, v5(0)=0, vs(£) =1 (7.9.32)

The no-slip boundary condition may not be appropriate, and by imposing
a slip condition is equivalent to adding a rigid motion to the solution.
The boundary conditions for pressures p, and p; may be determined from

(7.9.10) and (7.9.11),
dg,

5 _ 2
Toyy = —hsps — 20i( » ) (7.9.33)
Tyyy = —bsps — 2af( )2 (7.9.34)
by taking
Tsw(l) = Tfyy(l) =0 (7.9.35)

Using the material parameters for a sand-water mixture as given in Table
7.1, PAssMAN & NUNZIATO (1981) numerically solved (7.9.24)-(7.9.30)
subject to (7.9.21), boundary conditions (7.9.31)-(7.9.32) and (7.9.35), ob-
taining the results as illustrted in Figures 7.3-7.6.

Figures 7.3 and 7.4 show distributions of the solid fraction ¢, and ve-
locity v, for the case of ¢,(0) = ¢,(£) = 0.4 and £ = lem. With these
boundary conditions the particles are shown to be perfectly entrained in
the flow (v, =v;) and there are high shear rates close to the walls, whereas
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P |l a| B |éa| D | g
_9_| gcm g _9 cm
com3 32 cm 3 cmds 32
Sand (s) 2.2 | 4.00 |1 7230 | 0.74
Water (f) 1.0 | 2.92 | 0.01 -
Interaction 112 | 980

Table 7.1: Material parameters for a sand-water mixture

!
0.8f
0.6
04t
0.2

] 1 1 i 1 1
OO 02 04 0.6

Y

|

Figure 7.3: Distribution of the solid fraction ¢, for the case ¢,(0) = 0.4, ¢,(£) = 0.4,
L=1cm.

the material near the middle of the channel is relatively undisturbed. The
solid volume fraction exhibits the “dilatancy” effect, since it exhibits high
gradients and low values in the regions of high shear, whereas it is essen-
tially constant in the low shear region. The skewness of the graphs about
the centerline comes about due to the effect of the gravity force. The so-
lutions for ¢, and v, with @,(£)=0.2, ¢,(0)=¢,, =0.74, and £=0.5¢m are
illustrated in Figures 7.5 and 7.6. The solid fraction distribution becomes
almost linear, with high concentration values or “locking” phenomenon
at the bottom and producing almost a rigid body motion. The results
presented in Figures 7.3-7.6 also appear to agree qualitatively with exper-
iments (PASSMAN & NUNZIATO,1981).

7.10 Concluding Remarks

The linear theory of constitutive equations involving the deformation pos-
tulate (6.12.36) without the rotational effect and using the field equations
of chapters 2 and 3, reproduces many physical results and allows for many
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Figure 7.4: Velocity profiles for the case ¢,(0) = ¢,(£) = 0.4, £ = lcm.
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Figure 7.5: Distribution of the solid fraction ¢, for the case #,(0)=0.74, ¢,(£) = 0.2,
£=10.5cm.
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Figure 7.6: Velocity profiles for the case ¢,(0) = 0.74, ¢,(£) = 0.2, £ = 0.5cm.

structural effects in the mixture. The simplest extension of the linear
constitutive theory is to allow for the coeflicients multiplying independent
variables to depend on the invariants of these variables and selectively in-
troduce nonlinear terms in the constitutive equations as it becomes appro-
priate. In the following chapter, considerations are given to more complete
modeling of the structured multiphase mixtures. This modeling involves
the construction of constitutive equations with dilatation and rotation.



CHAPTER 8

MIXTURES WITH ROTATION AND
DILATATION

8.1 Purpose of the Chapter

This chapter provides a continuation of chapter 7 dealing with the develop-
ment of constitutive equations of multiphase mixtures with structure. Con-
siderations are given to mixtures with rotational and dilatational effects
relative to the center of mass of each phase by utilizing the isotropy assump-
tion of the inertia tensor (5.1.9) and deformation assumption (6.12.36). As
such, the chapter forms a starting point for the development of more com-
plete models of fluidlike and solidlike mixtures with linear and nonlinear
constitutive equations, studies involving wave propagation, and applica-
tions of modeling equations to different problems.

8.2 Constitutive Equations for Mixtures
of Isotropic Fluids

Equations (2.4.14), (3.4.2), (7.2.3), (7.2.8), (7.2.12), and (7.2.16) provide a
set of 134 algebraic equations for 13y unknowns

= -~

Po ’50”', Eai (07' Za[jk])’ ¢a, #Ea), bas ia

With the variables 7, and Za[jk] (or 5ai) assumed to be given, it is sufficient
to determine the remaining variables

T, = (éaa Taa M., Ga, 3a, ";aa 30, ia, U,, xaa Sa, Ea, zfa’ Aéaa q-sa)
a=1,...,4 (8.2.1)

by the constitutive equations which are restricted by the second law of ther-
modynamics. As in section (7.4) and based on the developments in chapter
6, it will be assumed that the mixture properties satisfy the principles of
local action and smooth and local memory, and that the independent vari-
ables in the constitutive equations are

To = Gan[ﬁﬂ’ vﬁﬂ’ Dﬂa Wﬂ - W»y, éﬂ, Vé-ﬂ, {’ﬂ - {’,y, ;ﬂ, ¢ﬂ,
Vs, ¢s, b, VIO = Gor[{Ss}] (8.2.2)
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where for each a, a=1,...,7, 8=1,...,7. The constitutive assumption
(8.2.2) is, therefore, an extension of (7.4.3) that includes the additional
effects of rotational motion relative to the center of mass of each phase as
specified by b(® and V(8.

The energy equation (7.2.16) can be further reduced by adding to the
right side

1 $a 2
2(zm zm+( ))

multiplied by equation (7.2.3) and
64 + 2261,

multiplied by equation (3.2.13), and using the inertia tensor isotropy (5.1.9)
and deformation assumption (6.12.36). The result of this algebraic manip-

ulation is
- _ - -~ A (a) ¢a i x B
pafa - _Qak,k + para - ca(fa Ea) - q.sa + m] i Acz]mi + (—'"),z ajji

_Vzm)(palfam) - Vz(m 1pa£€am - (%palfaz) + (¢a )2 amn] r(:rzj

= . 1, (o
+Taijvaij + Eca 1(m Vig (zamQ)‘Fﬁ ( zm m lq ),l Uam"q

1 a A (a o a
(2 zm) m)U mﬂl)l+ zm) 1(m l(n UC!JJ"+_ im zm( a]]l)l

+V(a) ( ( Ua nt + Vzr(:l)(¢a)dl>]l Uamzl + "(:1) ':)J Za Uamn]

m m] ]l
¢a A a) (a)
’ amz + =V, VabiVim Uaabm
(¢a) ! ¢a N
(8.2.3)
The condition (5.2.9), and frame-indifference requirement (4.3.49)
17:'(2)Uakli,m =0 — Uaktim = Uaktm (8.2.4)

require that

éa;akl [ mz m (¢a) 6mz] akti — 20 Uakli,i = 0, k % L (8~2-5)
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from where follow the sufficient conditions
takt = taiibkty  Uakti = Uajjibie (8.2.6)
such that the energy equation (8.2.3) is reduced to
paéa = _Qak k + pa":a - éc!(gct - Aéa) - q.sa + V,(,(IIJ), Acz]mi - Az(::l)z pa‘eEam
¢a Y (%a -
Act iji — \ 7 Pa
+H5E)Raus = (5

Using the Helmholtz potential (6.12.18) and energy equation (8.2.7) in the
entropy inequality (2.4.45) to eliminate p,7,, yields

leai) i+ Toijtnij — 02 (Pabeam);  (8.2.7)

gy L 1 = .= - alaVs_ %
_ﬁa(’lﬁa + gaaa) - 5-_(—1a'voa + 3aoa + Taijvaij + Vi(j )(pa‘eEai),j

(Za) xc!jjm + l;r(:;xj),i xc!jmi + éc:!(é-c! - ";a) - q-sa - (%pazfai),i

Y

~

z(m)zpalfam + Pa(&a + ¢a5ai,i - ;_a) >0 (828)

[0 4

where use is made of the incompressibility constraint (6.12.40). Comparing
(8.2.8) with (7.3.10) shows that the former equation reduces to the latter
equation in the absence of the rotational effect (f/("‘) =0).

Repeating the procedure of section (7.4) by computing ¥, with inde-
pendent variables given by (8.2.2), substituting the result into (8.2.8), and
requiring that the entropy inequality holds for arbitrary variations of

{Psi}s Psii> Daiss Dﬂijk, Wﬂij — Wiij, Waijke — Wyijk, 5;3, {85, ,-},

oﬂ,ij’ Ugi — vﬂa Zﬂ iy zﬂa ¢ﬂ’ {¢ﬂ} iy ¢ﬂ ifs zf)a zf}ca { Uk}’ Ukl

produces results (7.4.8)-(7.4.18) and
a";a _ a";a . _
P~ ol 0, B=1,...,7 (8.2.9)

ik

Utilizing the definitions (7.4.20)-(7.4.24) reduces the entropy inequality
(8.2.8) to

1 = 0o és 5% Ps O
=qe Vb, a E
5 F ﬂ#,[ 005 b 3Pﬂ b5 Odg )¢5

55, Post ¢a i)(Pai — i) — g«_p PtrDp)l + fo — vaila
B
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¢a [¢a(pa + 7o) — ’\akkm¢a m — $afla — (l_’aZEGi),i]

+éa[_¢a - ;- - ;)— + Ea] + Taz]val J + Vz] )(palfa,) J
+VT(I(IIJ)1 Ac!sz - z(m)z palfam = Ra({sﬂ}) >0 (8'2'10)

Moreover the rotational effect &(® , does not affect the functional form of
P, (cit. (7 4.26)), i.e.

Po = PolPgs0as P35, V) (8.2.11)

and the result (7.4.25) remains valid.
By defining an equilibrium thermokinetic process {Sgo} as in section 7.4,

Ra(ps, V35 Dp=0, W5 —W, =0, 85, Vig =0, %5 — %, =0,
;ﬂa ¢ﬂa V¢ﬂa ¢ﬂ = Oa b(ﬂ) =0, A\ 4% ®) = 0) = Ra({SﬂO})
ﬂ = la"'a7 (8212)

and reproducing the steps as in (7.4.28) and using (7.4.29) produces results
(7.4.30)-(7.4.36), and

Potaleai({S80}) = 0;  (Potaleai({Sp}))j=0, j#i (82.13)

Majmi({Sa0}) =0; j#m (8.2.14)

Moreover, (7.2.7)-(7.2-10) yield
Sa(it)({Ss0}) + Aa(ikymm({Sa0}) =0 (8.2.15)
Saiit)({S80}) + Xatikpmem ({Ss0}) + Pakaity({Ss}) =0 (8:2.16)
£o(iny({Sao}) =0 (8.2.17)

8.3 Linearized Constitutive Equations with
Rotation and Dilatation

The linearized constitutive equations considerably simplify the theories of
multiphase mixtures. Following the development of section 7.5, the reduced
equilibrium state {Sg} is defined as follows
{S;,ao} = {ﬁﬂ’ Vﬁﬂ =0, Dﬂ =0, Wﬂ - W7 =0, éﬂ’ va_ﬂ =0,
Vg—v,=0,i5=0, ¢g, Vds =0, g3 = 0, b¥) = 0, V¥ = 0}
(8.3.1)
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and is useful as a state about which the linearization of constitutive equa-
tions can be performed. In developing the linear constitutive equations it
is more useful, however, to replace b(®) by (b} + D), since the latter

quantity is generally smaller in magnitude, as an independent variable in
(8.2.2) and define a measure €? equivalent to (7.5.3) as follows

i i
e =) C1sVpsVps+ ) Coptr(DgDg)
B B

¥-1

¥ = =
+ ) Cagtr[(Ws— W, )(Ws — W,)] + ) Cig VsV,
5 5
Y - - - Y . Y
+ Z Csp(Ve — Vo )(Vg — V) + Z Cegtr(igig) + Z CrsVdp- Vs

+ Z Cop $ads + Z Coptr[(b®) + Dg)(b® + Dy)] + Z Curop P47
(8.3.2)
Employing (7.4.31),, (7.4.31)s, (8.2.13),, and representation theorems

of isotropic tensors as in section 7.5 it can be shown that the rotational
effect changes (7.5.6)-(7.5.8) to

4 v-1 4 -
2i({58}) = — D vappai — X CaplBipi — Bi) — Y Kap Ba;
8 5 8

— > Tapdpi— 3 Aupf) + O(e?) (8.3.3)
B B
tai({S6}) = =3 Yap b5, — Z Eap(Va — Z Aopps;
B
— ) Mg s Z Nas ) + O(?) (8.3.4)
B

- re i = ’7_1 7 -
Pabaleai({Sp}) = E €089s,: + Z €5 5(Tpi — Tyi) + D, €. Pa,;
B

+Z€3ﬂ¢ﬂz+26"ﬂ% +0(e?) (8.3.5)
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Hence, from equation (8.3.5) we obtain
(Patoleni),j = D € 5(Dpij — Doij + Waij — Wais) + O(€?)  (8.3.6)
8

Linearizing _’1";,.]. and using (7.4.31), and (7.4.20) gives

0 =
a;ij¢a t + 2 Z eaﬂ(Wﬂz] ‘Yij)

,
+ Y [Aap(trDg)6ij + 2papDgij] + Z tapipbij + Z Oup ¢6ij
3 3 3

Toii({58}) = —ba(pa + 7a)8is — Fute

+2 Z#aﬂ(b(ﬂ) + Dgij) + O(e?) (8.3.7)

whereas by using (7.4. 40) it follows that

Saii({Ss}) = —aPal{Sso})8ii + D _[Map(trDg)sij + ®apDgij]
]
v-1 ¥ . ¥ .
+ ) Tap(Wpij — Waij) + D Kapighii + Y Hap dpbis
8 s 8
Y
+3° 89,6 + Dgij) + O(e?) (8.3.8)
8

Equations (7.4.33); and (8.2.6); can be used to show that

p v p
butais(1551) = 30 Wap(trDg)6is + 3 Fag$abis + 3 Zandabis + O(e%)
8 8 8
(8.3.9)
whereas (7.5.21) and (8.2.6), give

‘y -
Aaiik({S6}) = D 8ilas s Pas + b5 a(Fpk — Tyk) + €5 5 05k + 5 5 b 4]
3
i - - =
+ Y ikla3 5P + b5 5(Tp5 — Bys) + €558, + d5 5 $5.4]
3
‘y _
+ Y 8iklas s Pai + b5 p(Ti — Uyi) + €5 585, + d5 5 bp.i]
3

5
+ Z[&ijA(f’ﬂ 17,(3’)[ + 5:'ch2 8 191(1 Y] + 5chA3 B Vl(z l)
B

+A3, 00 + A2 50 + A2 5900 + O(e?) (8.3.10)
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,
Usiin({S6}) = a5 s Ppx + b5 5(Tpk — k) + €5 5 Bs + d5 5 bk
3

+Bls '715)1] +0(e?) (8.3.11)

Equations (7.5.26)-(7.5.30) do not change form with the inclusion of the
rotational effect & (ﬂ) and for completeness only 9, will be listed, i.e.

Fa({55}) = $a(Bas Bas $8) + La(Ps B> 5) bnihari + O(!) (8.3.12)

_ For mixtures without the phase change ¢, = 0, and assuming that
fo = O(€®) as in section 7.6, further restrictions of material coefficients
in the linearized constitutive equations may be obtained from the entropy
inequality. Each of these coefficients may depend, in general, on all re-
duced equilibrium state properties of the mixture {.5';;0}. With simplifi-
cations (7.6.1) and (7.6.2), the entropy inequality (8.2.10), combined with
the above constitutive equations, becomes

R A =

of o o o o (0% o o =

{2 :[(5a6—‘§ + (€55 + €55 — €35)0ap)0s: + (€35 + a3 5 — a3 5)0apps,;
B.6 a

(€55 + d3 5 — d35)bapds; + (€35 — AS 5+ AS 5)6asP )00

+[(8as — %)Naﬂ + Bap(€5 s + b5 5 — b3 5)(1 — 85,)|l00) + VAVT}
{1}
il 6¢a_
D [Pamz=m 9, Ps + p = (Map + Bap)ltrDg}
Ba o
| 2}
H55 (Mo + Baa) + 3 (tns T + Oag b))t}
« B
3}
+{§ Sus(hap + 21s) (rD5)(trDs)} + {3 (26 + &5 s tr(WE W)}
8.6
{4 5}
HO asbastrl(Ds ~ L5 D04 - 5 D)
{6}

o
+{Z(é(11,ﬂ506 + 2#%650ﬂ) tT[Wg(bw) + DE)]}
B.6
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{7}
+{Z(A4ﬂ pf)+ A2 500 4+ A2, 56,5080} + O(€®) = Ra > 0

{8}
(8.3.13)

where VAV is given by (7.6.30) and use is made of (7.6.31). §,s is the
Kronecker delta defined by (7.6.9), €,4 is defined by (7.6.7), and

y-1

Es=€p B=1L...7—-1L & =-> &, (8.3.14)
B=1

As in section 7.6, the necessary conditions for the function R, in (8.3.13)
to be positive semidefinite are that each of the eight terms which are en-
closed by the brackets {...} be positive semidefinite. Thus, for a two-phase
mixture, setting in (8.3.13) the term {3} equal to zero recovers conditions
(7.6.12)-(7.6.14), setting the term {2} equal to zero recovers (7.6.18) and
(7.6.19), and setting the terms {4} and {6} equal to zero recovers (7.6.26).
When the terms {5} and {7} are set equal to zero and use made of (7.6.7)
and (8.3.14) we obtain

1

El,l = E?,l = €11 = €21 = 0 (8-315)

By = M2 = By = gy =0 (8.3.16)

The sufficient and necessary conditions for positive semidefinite form of
the term {8} are

A, <0; Af;=0, a#8; A55=A455,=0 (8.3.17)
By defining a new vector V as

V =(V8,...,V0,, V5., V5, ¥1,0e0y ¥, Vér,..., Vi,
o) o5 (8.3.18)

zmm’ ‘9 zmm

such that

VAVT = 2[0_60:606 ifgi + (= aﬂ5 a6 + (0o — p—;)7a6)55,i5ﬂi
B Va a

o | P ol Ka Yy T H Y
-I-% 5a595,i9ﬂ,i + —;:25@96,:'%,:' + > ﬂ5a5¢52ﬂ + = ﬂ5a6¢5<2>ﬂ

« « « «
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6¢a

+[(8as — Bpﬁ)Aaﬂ — PaPap= (50,5 bps))Pp i Vsi

+(6as — Epﬁ)(ﬁaﬂ — 88 bao)Tsitpi + [(8as — "‘)Maﬂ

0% Aap -
Pa¢a v (50,5 5ﬂ6)]¢ﬂz'"61+{[506a + (€55 T 2.6 — €3.6)0ap]05,:

[0 4

+(€(21,5 + ag,a - a§,5)5aﬂ36,i + (fg,a + dg,s - d§,5)5aﬂ¢5,,- + [(5 5§~ _)Naﬂ
+(€(11,5 + bg,s - b§,5)5aﬂ(1 - 516)]561' + (Eg,ﬂ - Ag,ﬂ + A3 ﬂ)5a6"zt t}Vz(Z)m]
(8.3.19)
the entropy inequality (8.3.13) becomes
VAVT + 0(%) > 0 (8.3.20)

The necessary conditions for (8.3.20) and for two-phase mixtures are iden-
tical to (7.6.32) and (7.6.33), producing restrictions on the coefficients £,z
as given by (7.6.34). Moreover

o~ A3t A5, 20, a=1,...,7 (8.3.21)

The condition (7.4.25) and relations (7.4.23), (8.3.12), (8.3.10), (8.3.5), and
(8.3.15) yield, for two-phase miztures:

OB+ 85=0, a,B=1,..,9 (8.3.22)
atstazstass—es=0, ofB=1,...,9 (8.3.23)
GstchstGs—es=0, af=1...,7 (8.3.24)

dtlx,ﬂ+d(21,ﬂ+d§,ﬂ_€§,ﬂ :Oa a;éﬂ, ﬁ:]'"",7
o+ dyy +d5, — 5 =2p,020, a=f (8.3.25)

Al — Az~ A — Ay —Agp—€lp=0; a,8=1,...,7 (83.26)
where (8.3.26) can be further reduced by using (8.3.17) and (8.3.21).
For saturated two-phase miztures ¢s,, = —d1,m, and it follows that
(df, — dYa) + (d3, — d55) + (d51 — d5,) — (€5, — €52)
= 20, ¢z 1a(6a1 — ba2)
(8.3.27)
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As sufficient conditions we may take

Eoﬂ—fzﬂ—Esﬂ—€4ﬂ—Alﬂ:Agﬂ—Agﬂ—A5ﬂ:Aaﬂ—0
(8.3.28)

and

1 .
d‘II,I - d(11,2 = dg,l - dg,z =d3, — dg,z = §2pa¢c2:!Ia(6al - 5a2) (8-3-29)

¥

such that with (8.3.17) they reduce (8.3.10) to
Rt = A3 5] + 2podlulbar — 6as) B + Sy + Bids) + O(E)
(8.3.30)
whereas (8.3.5) and (8.3.6) become
Paoleai = O(e%), (Paoleai); = O(”) (8.3.31)
since from (8.3.15) ef, =0.

8.4 Two-Phase Modeling Equations with Rotational
and Dilatational Effects

The restrictions on the material coefficients expressed by (7.6.13), (7.6.14),
(7.6.26), (8.3.15), and (8.3.16) reduce the stress tensor (8.3.7) into a form
independent of the rotational effects in the linear approximation, i.e.

az] ¢a(pa + Wa)sz] 2ﬁa¢aIa¢a,i¢a,j + [Aaa(trDa)aij + 2#aaDaij]
+0aadabij + O(e?) (8.4.1)

and hence
Mij = Toij — Toji = O(€?) (8.4.2)

The surface traction moment S, is given by (8.3.8), and using (7.6.12) and
(7.6.18) it is reduced into the following form

az] ¢aP 51] + Haa[(trDa)ng aij] - Oaa¢aDaij

+1ap(1 — 8ap)[(¢7Dp)bij — Dgij] + Z[Kaﬂ ig + Hap $g)5i;
5

+To1(Whij — Waij) + Z 83,(b%) + Dgij) + O(e?) (8.4.3)
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But from (7.2.12), (8.2.6),, and (6.12.36) it follows that

Sa(it) + Aa(itymm — ﬁaiaﬁDaﬂc =0, j#k (8.4.4)
¢

(0 4

which when combined with (8.3.30)

Katstyn = Babilalbor — 6a2)(Bemth s+ Sinbri) + O(E%), 7 #
(8.4.5)
gives
PooDajk + Bap(l — 6ap)Dgjr + O(e?) =0, j £k (8.4.6)
producing the following necessary conditions

Poa =P =0, ,8=1,2 or oo+ 62000 =0; Map=0, a+#p

(8.4.7)
Equation (8.4.3) is, therefore, reduced to
2
az] ¢aP 51] ¢a0aa(t7'Da)5ij + Z(Kaﬂ iﬂ + Haﬂ ¢ﬂ)5ij
8
+Tal(W1,J Wg,J) + Z @ ﬂ(b + Dﬂ,’j) + 0(52) (8.48)

and reduces to (7.7.3) in the absence of the rotational effect (this limit is
obtained by setting b(®) = —Dj). The arguments leading to the develop-

ment of (7.7.8) can also be employed to reduce the interphase interaction
force t, given by (8.3.4). Thus,

2 - 2 .
tai = Poi(Pa + Ta) — €ar(Dri — Uai) — Z7aﬂ b3, — Z Auppg;
B B
—ZNaﬂ Virt + 0(62) (8.4.9)
For a saturated mizture, the heat flux vector (8.3.3) becomes
2 - 2 _
Goi = — Z kap0gi — (Tor — Taz)ri — Z Vap Pg;i — Gai(P1i — ¥2;)
B B

- Z Aap £} + O(e?) (8.4.10)
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and if it is assumed that U, is only affected by the mixture’s structural
characteristics V¢g and () then from (8.3.11) use may be made of

Usiik = (d5, — d32)f1% + Z B2, 05, + O(e?) (8.4.11)

The energy source €, which is expressed by (7.2.14) can be more con-
veniently found from (8.2.7) and (2.4.35). Hence

éa = —éa(ga - éa) - q-sa + Vr(r(lxj)zAaJmi - Al(r(:l)lﬁa¢a£€am
+(%),i xc!jji - (%Ea¢a‘é—€ai),i + 0(63) (8'4'12)

where use is made of (8.3.6) and (8.3.15). This result can be further sim-
plified by utilizing (8.3.28), in (8.3.5), giving

f?’-a¢aZ€ai = 0(52)

Employing (6.12.36), (8.2.6),, and skew-symmetry of #(*), equation (7.2.10)
is reduced to

Bala(ity = Pata(BPBE) — p p850) — p emui( "),mUa,,pléjk

1 . .
_5#5 )paza(vak,mfmji + 'Uaj,mfmlci) (8.4.13)

Without neglecting the phase change effect, given below is a summary
of the field equations of chapter 2 and section 7.2 with the rotational and
dilatational effects included.

Po + PaVais = Cay  Pa = poyPa (2.4.14)
Patoi = Tnijj + Pabai + Pai (2.4.19)
ﬁa;:a = —&,1, + Koji + kajjii + icajj (7.2.3)
Pato = Tuijlaij — Gakk + Pafa + éa (2.4.35)

Palin e - (¢°)2), —"‘“[ bui + o ("‘“), Unramil s

Y

+8a (k) + Aa(ikymm — ﬁa;a%Dajk (7.2.12)

(0 4
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a (a 1 o ~ 7 Y
Botalt™ + 2: ] = 3 €tiklSalit) + Palalin  Aafjiimm

+p j¢_C!vvc:¢jk ¢a A(a)Uappl + Emlzll'( )U 171£J)m

a"a i i
$o $a
1 e e 3 -~ -
+§pazap’i (vak,mfmji - vaj,mfmki)] (728)

where use is made of (8.2.6)2, (6.12.36), (5.1.3), and (5.1.4). Moreover,

i = i — (0%, + (¢°) bim)ataPL3) + Z: bm)  (1.2.07)
Kajj = 2pa 22 ia o (7.2.6)

b = 90 — (22T, (72.5)

kajj = Catag; | (5.2.8)

bass = Gt — 9 Ui ("‘“ Uasim)om (7.2.4)

These field equations together with the constitutive equations developed
above include the effects of rotation and dilatation and should be useful to
model complex two-phase mixtures, including the phase change processes
when supplied by the constitutive equations for é,, €., gsa, and Qajj. Asin
section 7.5, these constitutive equations can be easily developed by extend-
ing (7.5.20) and (7.5.24) to include the rotational effect. The coeflicients in
the constitutive equations can then be restricted by the entropy inequality
(8.2.10).

8.5 Nonlinear Constitutive Equations

At high shear rates, the granular media exhibit a nonlinear behavior of
the shear stress with the shear rate, as discussed in section 7.8. Nonlinear
constitutive equations considerably complicate the theory of multiphase
mixtures and can render it unpractical if all nonlinear effects are retained.
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In this section, some central ideas employed in the construction of non-
linear constitutive equations are discussed which may be utilized for the
construction of very complete models of multiphase mixtures.
For a multiphase mixture of isotropic fluids, use can be made of (6.10.1)
with independent constitutive variables given by
Yo = Gaklpg, Vg, Ds, Ws — W, 65, Vs, ¥5 — 7, ig, b5,
b(® + D4, VL) (8.5.1)
where use is made of pg=psds, and b® is replaced by an equivalent, and
generally of smaller magnitude, quantity b(¥)+Dg. To reduce the algebraic
complexity of constructing nonlinear constitutive equations it is convenient

to simplify (8.5.1) further to mixtures with the constitutive equations of
the following form:

T, = Gaﬁ-[ﬁﬂ’ éﬂ’ ;ﬂa ¢ﬂ’ V¢aa Daa b(a) + Da, Vu(a)] (8'5'2)
where the inertia tensor is isotropic, and the effects of

W5 —W,, Vs, Vs, V5 —v,, B=1,..,7
Vs, Ds, b® + Dy VB gLa

can be neglected.
The effects of structure of the multiphase mixture are represented in

(8.5.2) by
;ﬂa ¢ﬂ’ V¢aa b(a) + Da, Vu(a)

and by assuming that these structural effects are small, the following rep-
resentation of the stress tensor Ta, surface traction Sa, and intrinsic stress
moment A, can be obtained

T, = EX(s, 85, ¢, 35, Vo, Do, b® £ D) + O(Ve®)?2  (8.5.3)
Sa = F2(Bg, 85, ba, 16, Vo, Do, b + D) + O(Vr())?  (8.5.4)

Xaijk = Kaijk(ﬁﬂa é-ﬂ, ¢ﬂ, ‘Z:ﬂ, V¢a, Da, b(a) + Da, Vl/(a))
= ’—\guk(ﬁﬂ’ gﬂ’ b3, ‘z:ﬂ,Van =0, D,, b() + Daavu(a) = 0)

Nk Ao, 3
Ov (aiku'("'Z‘ 0o 2 Gos + O((Vv*)%,(V¢a)?) (8.5.5)

mnl

+
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Since K, is a tensor-valued isotropic function that satisfies
Ka(;ﬂ’ é-ﬂ’ ¢ﬂ’ ;ﬂ’ Qv¢a’ QDaQT, Q(b(a) + Da)QT, QVVQQTQT)
= QKG(Eﬂ’ éﬂa ¢ﬂ’ ;ﬂa V¢a, Da, b(a) + Da, VV(Q))QTQT (856)

we may choose the necessary condition Q=—I, giving

Ka(ﬁﬂ’ é-ﬂ’ ¢ﬂ’ ;ﬂ’ _V¢aa Da, b(a) + Da, —Vll(a))
= —Ka(pgr 85, 85, ig, Ve, Do, b + D, V()

from where it follows that
Ka(7g, 05, 85, ig, Vo =0, Du, b + D,, V1" =0)=0 (8.5.7)
In (8.5.5) it is necessary, therefore, to set

X253, Bs, b8, 35y Vo =0, Dy, b® + D, V) —0) =0 (8.5.8)

Moreover,
aAaz]lc and aAaz]lc
aV,(:rZ’l a¢a £

are isotropic tensors of order six and four, respectively, and upon using
equation (A.47) of the appendix, (8.5.5) becomes

Aaije = 8ij05 o bap + 6ikdy o aj + k50 Pasi
+5u(“4a mmk+b Vl(ct)t+c4a"tkt)+5zk(asa ,(,731] +b5a”l(Jl+CSa 1(73)
+6Jk(a6cx mmz + bg o z(tat) +cGaVlz ))+a7a z(]al)c + b7, 1(;:; + TV ](?I)C
+ag, a”l(cz) + b3, ](;:)1 +cSaVk]z +O0((Vv Ol))3 (V¢a)3)

(8.5.9)
where the coefficients a’s, b’s, and c’s depend on the invariants of
ﬁﬂa Eﬂa ¢ﬂa ;ﬂa Dq, b(®) + Da

Using (A.39) and neglecting the second order effect of b(®) + D,, this
irreducible set of invariants is given by

B> Op, b3, 15, trDy, trD?2, 1D trDy (b + D,),
trD2(b) + Dy,), tr(b( + D,) (8.5.10)
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It should be noted that the coefficients df ,, d‘z"a, and d5, in (8.5.9) are
different from the same coefficients in (8.3.10), since the former coefficients
depend on D, and b(® 4 D, whereas the latter do not.

The stress tensor is uniquely expressable as the sum of symmetric and

skew-symmetric parts, i.e.
= (TG)SW- + (Ta)skew (8.5.11)

where use can be made for each part of the tensor representation theorems
of section 4 of the appendix. Thus, be defining

M, = Vé, x Vs (8.5.12)
and using (A.42) and (A.44), gives

(Ta)oym. = Bol + iDa + B2D2 + B3(b® + D, + b7 4 D)
+B4[Da(d® + D, +b@7 4+ D) + (b + D, + b7 + D,)D,]
+B5[D4(b® + Dy + b7 4 Dg) + (b + D, + b7 + D)D)

+BsMa + f7(MaDa + DaM,) + fs(MaDy, + Do M,)
+6[Ma(b®) + Dq + b7 4 D) + (b + D, + b7 + D, )M,
+B10[Da(d® + D, — b7 —D,) — (b® + D, — ™7 — D,)D,]
+u[D%(b) + Dy — b7 —D,) — (b + Dy — b — D,)D]]

+612[Ma(b(® + Do — b7 — D) — (b®) + D, — b*)T — D, )M,]
+O((Vv®)?, (b +D,)?) (8.5.13)

(Ta)skew =71 (b®) + Dy — b7 — Dy) + 7,[Da(b™) + D, + b7 + D)
—(b® + D, + b®7 + D,)D,] 4+ 13[D2(b™ + D, + b®T 4 D,)
—(b® + D, + b®7 4 D,)D?] + 74[D (b + D, + b7 + D,)D?
—D2(b® 4 D, + b®™7T + D,)D,] + 75(M,D, — DaM,)
+796[Ma(b® + D, +b®7 4 D,) — (b + D, + b7 + D,)M,]
+97(MyaD2 — D2M,) + 75(D. M, D2 — D2M,D,)
+79{DaMa(b® + D, + b7 1+ D,)
—(b{® 4+ Dg + b*7 4+ D, )MoD, + Ma[(b®) + Dy + b7 4 Do )D,
—Da(b("‘) + D, + b7 £ D,)] — [Do(b® + D, + b7 + D,)
—(b® + D, +b@®7 4+ DD, ]M.,} + 710[Da(b® + D, — b7 —D,)
+(b® + D, — b7 —D,)D,] + 111 [Ma(b® + D, — b7 _D,)
+(b® + D, — b7 — D, )M,] + O((Vv®)?, (b(®) + D,)?)
(8.5.14)
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Adding (8.5.13) and (8.5.14) results in a general expression for T, %.e.

To = aol + 0Dy + aaD? + az(b® + D,) + ay (b7 + D,)
+asDo(b® + D,) + ag(b® + D, )D, + a;D, (b7 + D,)
+as(b®7 + D,)D, + agD2(b(® + D,) + a;0(b® + D,)D2
+anDZ(b®7 4+ Dy) + 012(b™7 + D, )D2
+ey3[Da(b® 4+ D,)D? + D, (b7 + D,)D2 — D?(b(® + D,)D,
—D2(b®)7 1+ D,)D,] + &1sM4 + a1sMyD,, + 16D M, + a17M,D2
+038D2M,, + a15M,(b©) + D, ) + apeM, (b7 + D,)
+ag (b® 4+ Dy)M, + (b7 + D,)M, + az3(D.M,D2 — D2M,D,)
+ap4{DaMa(b® + Dy + b7 + D,) — (b + D, + b7 + D, )M, D,
+M,[(b® 4+ D, + b®7 4 D,)D, — Do(b®™ + D, + b™7T 4+ D, )]
—[Do(b® + D, + b7 4+ D,) — (b + D, + b7 4+ D,)D,]M,}
+0((Vv®)? (b + D,)?)
(8.5.15)
The coefficients §;; 1 =0,...,12, v;; 7 =1,...,11, and a;; k=0,...,24
in above equations depend on the invariants of independent constitutive
variables in (8.5.2), which by employing equation (A.39) of the appendix
are given by
Pss 53, ép, ig, ttM, trD,, trD2, trD3, tr(b® + D,),
trDo(b® + D,), trD2(b® + D,), trM,D,, trM,D?,
trM,(b(® + D,), trMy (b + D, + b®7 4 D, )D,,
trM,(b® + D, — b®7T _D,)D,, trM, (b + D, — b7 —D,)D2,

A=l (8.5.16)
where the terms involving (b(®) + D,)? have been neglected.

An identical expression to (8.5.15) with ay replaced by 7, k=1,...,24,
can also be obtained for S, and other second order tensor-valued isotropic
functions. Similarly, nonlinear constitutive equations for vector-valued
isotropic functions can be obtained using equation (A.40), whereas the
scalar-valued isotropic functions can be expressed in polynomials of the
invariants of independent constitutive variables using (A.39). For multi-
phase mixtures, the nonlinear terms in constitutive equations should be
introduced selectively in order to produce practical models of mixtures.
The linear forms of T, and X, developed in previous sections are con-
tained within the nonlinear forms of these equations expressed by (8.5.15)
and (8.5.9), #f, in addition, use is made of (6.12.36).
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8.6 Concluding Remarks

In this chapter, the linear constitutive equations for multiphase mixtures
of fluids with rotational and dilatational effects were considered. The rota-
tional effect considerably complicates the theory of mixtures by introducing
three additional balance equations. Further complications in the theory of
mixtures can be produced by not assuming an isotropy of the inertia ten-
sor and by constructing nonlinear constitutive equations as discussed in
section 8.5. The simplest way to introduce nonlinear effects into the con-
stitutive equations is in the phenomenological coefficients in the form of
polynomials of irreducible invariants of independent constitutive variables.
Models of multiphase mixtures with combined fluidlike and solidlike phases
can also be developed by employing the contitutive principles of chapter 6,
whereas the higher order theories of structured multiphase mixtures may
be constructed by using higher order approximations in equation (3.1.3).
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APPENDIX

THEOREMS OF ALGEBRA,
GEOMETRY, AND CALCULUS

The purpose of this appendix is to summarize some basic results from
algebra, geometry, and calculus for the purpose of making the monograph
more readily accessible to those less familiar with the basic mathematical
concepts used in the book. The symbols below have the following meaning:

V meaning ”for every”

A —» B meaning "mapping of A into B”
— meaning “implies”
z meaning “cartesian product of sets”
X meaming “lensor product”
€ meaning “belongs to”
U meaning “union”

C meaning ”is included”

1 Concepts from Abstract Algebra

Necessity and Sufficiency. A statement that P is true if and only if
a condition @ holds is equivalent to the statement that a necessary and
sufficient condition for P to be true is that @ holds. The proof must
proceed as follows:

Sufficiency (if) (Q is sufficient for P) - Assume @ holds; then show that
this implies that P is true.

Necessity (only if) (Q is necessary for P) - Assume P holds; then show
that @ follows as a consequence.

Functions. A function ffrom a set A into a set B is an ordered triple
of sets (f, A, B) denoted by f: A —» B (f maps A into B), where:

1. f C AzB (f is a proper subset of AzB).
2. V z € A there exists a y € B such that (z,y) € f.

3.V zeAand yy,y; eB,if (z,y1) € f and (z,y2) € f, then y; =ys.
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When (z,y) ef, we write

y = f(z) (A.1)

1. Surjective (Onto) Functions. A function f: A — B is surjective, or
from A onto B, if and only if every b € B is the image of some element of
A.

2. Injective (One-to-One) Functions. A function f : A — B is injective,
or one-to-one, if for every b belonging to the range of f there is exactly
one a € A such that b= f(a).

3. Bijective (One-to-One and Onto) Functions. A function f: A - B
is bijective, or one-to-one and onto, if and only if it is both injective and
surjective; i.e., if and only if every b € B is the unique image of some a ¢ A.

A function f: A — B is invertible if and only if it is bijective.

Homomorphism. Let @ ={A4,*} and #={B, o} denote two systems,
@ consisting of a set A and a binary operation * defined on A, and # con-
sisting of a set B and a binary operation o defined on B. A homomorphism
of @ into # is a mapping H : @ — # such that for each a,be A

H(a * b) = H(a) o H(b) (A2)

Note that there need not be a one-to-one correspondence between the ele-
ments of @ and their images in #.

Isomorphism. Let @ and # be two systems as above. The systems @
and # are isomorphic if and only if the following hold:

1. There exists a bijective map F: A — B.

2. The operations are preserved by the mapping F in the sense that if
a,be A, then F(a x b)=F(a) o F(b).

The mapping is then referred to as an isomorphism or an isomorphic map-
ping of @ into #. Isomorphism is a special case of homomorphism in which
the mapping is bijective.

Group. Group is a system consisting of a set G and a binary operation
* on G such that the following axioms must hold:

1. Closure. If a,b € G, then a xb € G, i.e. a group is closed under the
operation *.

2. Associative Law. For every a,b,ce G,a (bxc)=(ax*b)*c.

3. Identity Element. There exists an element e € G such that a xe =
exa=a for every a € G.

4. Inverse. For each a € G, there exists an inverse element a=! € G such
that axal=alxa=e.
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If @={G, %} is a group, any group @, ={G1,*} such that G; C G and
e € G, is a subgroup of @, denoted by @, C @.

2 Concepts from Linear Vector Spaces

The real linear vector space under consideration in the book is Euclidean
with a cartesian coordinate system. The elements of this space are scalars
usually indicated by the light-faced italics a,b, ¢, A, B, ®,.. ., vectors indi-
cated by bold-faced miniscule letters a,b, §,..., and tensors indicated by
bold-faced letters A,B,T,®,.... The standard basis of the space is defined
as follows:

€ = (la Oa O)a € = (Oa la O)a €3 = (0’ 0, 1) (A3)
such that if x is any vector, then
X = Zpeg (A4)

where z are unique scalars or components of vector x. The subscript %
is the tensor indez and repeated implies a summation from 1 to 3. The
tensorial indices always occur as subscripts and are denoted by the italic
light-faced miniscules 4,3, k,... The basis e;, e;, e; is orthonormal, since

eq-e¢:5q¢ = ].Zf q:l
= 0if q#¢ (A.5)

where 6, is the Kronecker delta, with é,, =3. The magnitude |x| of the
vector x is defined with an inner product, denoted by a dot, i.e.

x> = xx (A.6)
The two vectors x and y are orthogonal if
xy=0 (A.7)

The second order tensor A is a linear transformation; a mapping A of
the vector space § into the vector space §', i.e.

A(ax +by)=aA(x) +bA(y)=aAx+bAy (A.8)

for all vectors x and y and scalars a and b. The linear transformation
A can have an inverse A~'. If dim$ = dim$’, then any of the following
statements is a necessary and sufficient condition that A has an inverse: A
is one-to-one, A maps $ onto $', the nullspace of A contains only vector 0.
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If A7?! exists, it is a linear mapping, and (A~*)~! = A. The unit linear
transformation I is a unit tensor, satisfying for all x

Ix=x ’ (A.9)
With ey, e;, e3 defining a basis of the vector space, the condition
Ae, = A,-jej (A].O)

defines the components A;; of A relative to the basis. The components of
A form a matrix || A;; ||, with the row index ¢ and column index j. The
determinant of the tensor is the determinant of the matrix || A;; ||, and A
is invertible if detA #£0. If A and B are tensors, their composition AB is
the product of A and B. The components of AB are A;;Bji, and

det(AB) = detA detB = det(BA) (A.11)

If detA=+1, then A is unimodular.
The tensor product of vectors a and b is the tensor a x b, such that

(axb)u=(ub)a V ue$ (A.12)
The set of tensors e; x e; forms a basis for the space of tensors, i.e.
A= A,’j e Xey
I= 5,'_,' e Xe; (A13)

Similarly, the products e; x e; x e; form a basis for a third order tensor U,
U="Uijrei X e; X e (A.14)

with components Ujj;.
The transpose AT of the tensor A satisfies

(AT)i; = Aji (A.15)
and
(A+B)'=AT+B", (AB)"=B"A", (AT)" =
(axb)=bxa (A.16)
and if A is invertible, then so is A7, and
(AT =(A™)T (A.17)

A tensor S is symmetric, or W skew-symmetric if

S = ST, S,'j = Sj,'; W = —WT, VV,'J' = —Wj,' (A].S)
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and any second order tensor A has a unique representation as a sum of
symmetric and skew-symmetric tensors,

A=S+W (A.19)

where
1
S = %(A +AT), W= (A AT) (A.20)

or in terms of brackets (...) indicating symmetrization and [...] indicating
skew-symmetrization

Aij = Agjy + Ay Ay = Siiy A = Wi (A.21)

The symmetry and skew-symmetry can also be defined for a third-order
tensor U, i.e.

Uijk = Ugijky + Ugijig + %(U[iﬂk + Uit + Ugiye — Usiiy) - (A-22)
where
Uijry = (U,J]c + Ujki + Ugij + Ujix + Ukji + Uirj)
Ulise) = E(Uijk + Ujki + Uxij — Ujix — Ugji — Uirj)

Uz])k - (Uljk' + szk)

Ujie = E(Uijk — Ujir) (A.23)
The third order alternating tensor is defined as
€k € X e; X e (A.24)
+1if (2,7, k) is an even permutation of (1,2,3)
€&jr = | —11if (Z,7,k) is an odd permutation of (1,2, 3)

0 if two or more indices 2, 7, k are equal
In particular, the following results are useful

€pqs€snr = 5np5rq - 5nq5rp
quSESQT = 6qp6rq - 6qq6rp == 6pr - 36rp == _26pr (A-25)
The contraction operation of a tensor lowers its index by two. For

example, the contraction of a second order tensor A leads to a tensor A;;
of order zero, or the trace of A, trA, i.e.

A,',' = tT'A, a-b= tr(a X b) (A26)
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The cross product w=a A b of vectors a and b is a pseudovector
W; = €jkA;af (A27)

and with any second order skew-symmetric tensor W can be associated a
vector w, such that

1
w; = §€ijijk, Wij = ejpwg (A.28)
or in matrix form
0 Wi Wi 0 w3 —Ws
| Wisll=| Wiz 0 Wyi=|-ws 0 w (A29)
—Wis —Was 0 wy  —wWy 0

A mapping Q of an inner-product space is orthogonalif it preserves the
inner-product:

Q(a)Q(b) = ab (4.30)
This condition is satisfied if and only if Q is an invertible tensor such that
Q' =q’ (A.31)

and hence
detQ = 1 (A.32)

If detQ =1, the orthogonal tensor is proper or a rotation.

Two topological spaces (X, X) and (Y,)), where X and Y are sets and
X and Y are topologies, are homeomorphic (or topologically equivalent) if
and only if there exists a map H : X — Y such that

1. H is bijective.
2. H 1s continuous.
3. H1is continuous.

The map is then a homeomorphism from (X,Y) to (X,)).

The distance between the points a and b is the magnitude |b — a| or
metric that can define a topology of the Euclidean space, with standard
procedures defining then the continuity, convergence, limits, compactness,
etc. When a tensor A maps a subspace into itself, that subspace is invariant
under A. Every tensor A has invariant subspaces: the whole vector space,
the subspace {0}, the range of A, and the nullspace of A. Moreover, if A
is any scalar the nullspace of A — Al is also an invariant subspace of A. It
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is called the proper space of A corresponding to A, and its dimension is the
multiplicity of A for A. The characteristic equation of A is

As —IlAZ +I2A—I3 = 0 (A.33)

where the principal invariants I of A are uniquely determined by the
complex numbers a,, ay, a3 such that

AS - I]Az + IZA - I3 = (A - al)(/\ — ag)(A — 03)
L =a,+ay+as, I,=aqa3+asa; +aia;, I3=ajaa3 (A.34)

If A is symmetric then a,, a;, and a3 are basic invariants in the sense that
any invariant of A can be expressed in terms of them, i.e.

1
L=trA, I,= 5[(trA)2 —trA?], I3=detA (A.35)

Another set of invariants of A are trA, trA?, and ¢trA3. The invariants, by
definition, are independent of the choice of the coordinate system and play
a central role in the theory of constitutive equations as further discussed
below in section 4.

3 Basic Identities from Calculus

Let f and g be scalars, f and g vectors, A a second order tensor, and all
differentiable. Then,

V(fg)=fVg+gVi, (f9):=fg:+gfs
V(f-g) = (V) g+ (Ve)'f, (fig:)j=fiig+ figi
V(fg)=fVg+gxVf, (fg)i=Ffgii+taf,
div(f) = V£ = tr(VE) = fi;
Af =div(Vf) =tr(V?f), fi=(fi)a
V-fg=div(fg) =g Vf+ Vg (fg)i=gifi+ fgii
V.(Ag)=(V-AT)g+tr(AVE), (Aijgi); = Aijigi + Aij 9;.
V(Ve) =V(Vg), giji=gii
V(Vg+(Vg)')=Ag£V(V-g), (gi;+g:i)i=gijjE giji(A36)

4 Results from the Theory of Invariants

and Tensor Representation Theorems
The invariance of constitutive equations under orthogonal transformation
Q is discussed in chapters 4 and 6. A function

f(Vl,.-.,VP, Al,...,AN, Wl,...,WM) (A.37)
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of P vectors v, N symmetric second order tensors A, and M skew-symmetric
second order tensors W is an absolute invariant of the vectors and tensors
under the transformation Q if

f(Qvy,--., Qvp, QALQ7, ..., QANQ", QW,Q7,..., QW,,Q")
Zf(Vl,...,Vp, Al,...,AN, Wl,...,WM) (A38)

The central problem in the theory of invariants is to determine a set of ba-
sic invariants from which all other can be generated, given a set of variables
(vectors and tensors) and a group of transformations. When it is sufficient
to consider a function of polynomial invariants, the polynomial invariant
is reducible if it can be expressed as a polynomial in other invariants. A
set of polynomial invariants with the property that any polynomial invari-
ant can be expressed as a polynomial in members of the given set is an
integrity basis. The main problem is to determine minimal integrity bases
and polynomial relations between invariants which do not permit any one
invariant to be expressed as a polynomial in the remainder.

In this section, a summary of representations of isotropic scalar, vector,
and tensor functions will be presented from the works of WANG (1971),
SMITH (1971), and corrections introduced by BOEHLER (1977). For poly-
nomial invariants, the article by SPENCER (1971) may also be consulted.

Let f, g, H, and K be scalar, vector, symmetric second order tensor,
and skew-symmetric second order tensor isotropic functions, respectively,
of vectors and tensors as in (A.37). The irreducible set of invariants of P
vectors v, N tensors A, and M tensors W are as follows:

V'V, Vo'V, trA;, trA2 trA3 trA;Aj,
irAZA;, trA; A2, trATAY tr AiA A, W2 (P W, W,
trW,W, W, v,-A;vp,, vm-A?vm, Vi AiAjVe, Vi AV, vm-A?v,,,
Vi (AiAj — AjA;)v,, vm-W?,vm, Vo W, W, v, vm-Wf)qum,
Vi Wy WiV, Vi Wovn, Vi Wivp, v (W, W, — W W, ),
trA;W2, tr AZW2 tr AZW2ZA W, tr A, W, W, ir A, W, W2,
tr AiW W, trA; AWy, tr A;WZA W, trA AW, trAZA; W,
Vi AWV, Vi WA Wivy, Vi ATW v, Vi (AW, — WAy
(A.39)
where i,5,k=1,...,N; i1 < j < k, where p,q,7=1,...,M; p< g < r, and
where m,n=1,...,P; m <n.
The representation of a vector-valued isotropic function g is given by

g(Vm, A Wp) = Z Qy gr(vma A, Wp) (A'40)
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where a, are scalar-valued isotropic functions of the invariants (A.39),
whereas g, are vector-valued functions given by

Vi, AiVin, A2vi, (AiAj — AjA)Vi, Wpvp,,
ngm, (W, W, — W, W,)v,,,, (A;W, — W,A,)v,, (A41)
where 7,7 =1,...,N; ¢ < j, where p,g=1,...,M; p < q, and where
m=1,...,P.
A symmetric tensor-valued isotropic function H has the following rep-
resentation

H(vn, A;, Wp) = Zﬂr H,(vm, A, Wp) (A.42)

where 3, are scalar-valued isotropic functions of the invariants (A.39), and
where H, are symmetric tensor-valued isotropic functions given by

I Ai, AZ, AiAj + AjA;, ATA + AGAL AAT + AZA;,

Vi X Vi Vi X Vo + Vi X Vi, szn W, W, + W, W, W,,Wg — Wng,
WEW,, — W,,Wf,, Vi X AjVp + AjV X Vi, Vi X A?vm + A?vm X Vi,
Ai(Vin X Vo — Vo X Vi) — (Vi X Vi — Vi X Vi JA, AW, — W A,
W,A W, AW, — W A} WA W2 —WIAW,, Wyv, X Wy,

Vi X Wpvy, + Wyvy, X v, Wyv, X Wf,vm + W?,vm X Wpv,,
Wp(Vie X Vo — Vi X Vi) + (Vi X Vi — Vi X v, )W),
(A.43)
where 7,7 =1,...,N; ¢ < j, where p,g=1,...,M; p < q, and where
m,n=1,...,P;m <n.

A skew-symmetric tensor valued isotropic function K has the represen-
tation as follows

K(vm, Ai, W,) = 27, K, (Vm, Aiy, W,) (A.44)

where 7, are scalar-valued isotropic functions of the invariants (A.39),
whereas K, are skew-symmetric tensor-valued isotropic functions given by

Wy, WW, — W, W, AiAj — AjA,,
ATA; — AGAL ATAY — AZAZ, AJAGAT — AZAGA;, AjAAYT — ATAA,,
AiAjAL+ AjALA + ALAA; — AjA AL — AjAGA; — ALAGA,,
Vi X Vo — Vo X Vi, Vi X AV, — Ajvy, X Vg, Vi X A?vm — A?vm X Vo,



218 APPENDIX

Aivi, X Alv, — Alv, X Ajv, Aiv, X Ajvp,
—AjVvy, XAV, + vy, X (A,’Aj — AjA,')Vm — (A,'Aj — AjA,')Vm X Vi,
Ai(Vie X Vo — Vi X Vi ) + (Vi X Vi — Vi X Vi JAy, AW, + WA,
AW2 —W2A;, Vi X Wpve — WV X Vi, Vi X WV, — Wivy, X Vi,

W, (Vi X Vo — Vo X Vi) — (Vi X Vg — Vi X Vi )W,
(A.45)

where ¢,5,k=1,...,N; i < j < k, where p,q=1,...,M; p < g, and where
m,n=1,...,P; m < n.

The representation of a general second order tensor-valued isotropic
function is obtained by adding (A.42) and (A.44). Form-invariant func-
tionals may also be constructed in terms of polynomial invariants (SPENCER,
1971).

An occurring problem in the studies of linearized constitutive equations
is to obtain representations for isotropic tensors. An isotropic tensor of
order p has components which are unchanged by an orthogonal transfor-
mation of rectangular cartesian coordinates (SPENCER,1971), i.e.

ol (A.46)

iliz...i,_; = ailiz-..i,_;
B is even: ai,..i, is the sum of the terms of the type

5:',,1',3 birig - bigi,

p is odd: o ;,. i, is a sum of the terms of the type

binig Oinis - - 8iriy, Eiigir

where in each case a,8,7,9,...,p,0,7 1s a permutation of 1,2,...,p. As
can be seen, the isotropic tensors of even order are invariant under improper
orthogonal transformations, whereas those of odd order change sign under
such transformations. For the use in chapters 7 and 8, it can be shown
from the above that

aij =ab;, ok = acjk
ijpg = @8;jbpq + bbipbiq + cbigljp
Qijkmnt = @1 8ij0ktOmn + 2 6;i6kmben + 03 6;i64mbkn + 04 6ik0itbmn
+as8:k8tmbjn + 66 6ikbimbin + a7 8k0itdmn + a8 8k0imbin
a9 8jkbinbme + @10 8imBindke + @11 8im8jtbkn + @12 8inbjmbre
+13 6inbtbkm + 314648 jmbkn + @15 0510 jnbkm (A.4T)
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Acceleration
of center of mass, 40
of phase, 24, 40
Affine deformation, 38
Alternating tensor, 27
Angular momentum
balance, see Balance equations,
angular momentum
velocity about center of mass, 70
Area
interfacial, 1
Averaged
equation properties, 33
variables
types, 21
measurement, 129
Averaging
choice of procedure, 13
conservation and balance equations,
1
over area, 1
over volume, 1, 15, 19
over time, 1
singularity, 14
Balance equations
additional, 2, 41
angular momentum
local, 17
of mixture, 27
of phase, 27, 157, 192
energy
local, 17
of mixture, 28, 51
of phase, 28, 74, 133, 185
entropy
local, 17
of mixture, 30, 51
of phase, 30, 121, 136, 185
equilibrated inertia

of mixture, 51
of phase, 41, 71, 75, 131, 134, 194
equilibrated moments
of mixture, 51
of phase, 43, 134, 161, 194
general equation of balance, 21
linear momentum
local, 17
of mixture, 26
of phase, 25
mass
local, 17
of mixture, 25
of phase, 25
of postulatory theories, 77, 83
of variational theory, 80
Bodies
continua, 5
of phase, 23
Body force
local, 18
moment
of mixture, 50
of phase, 43, 77, 132, 136, 194
of mixture, 26
of phase, 25
Boundary conditions
between phases, 18
in averaged equations, 175
Bubble equation, 164
Calorodynamic process, 88
Causality, see Constitutive
equations, principle
Cauchy-Green tensor, 105
Canchy’s law of motion, 3
Center of mass of phase, 16, 19, 37
Change of frame, 55
Clausius-Duhem inequality, see
balance equations, entropy
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Cohesion, 169
Configuration
mapped, 19
of phase, 23
pressure, 140
reference, 16, 23
spatial, 16
Conservation of mass, see
Mass, conservation
Constitutive equations, 65, 86
admissible thermodynamic
process, 89
as a deformation postulate, 52
equilibrium state for
linearization, 144, 186
fluidlike phase, 114
in modeling structured
properties, 2
isomorphism, 98
linearized, 144, 186
local relative, 107
of isotropic
fluids, 136
mixtures, 183
nonlinear theory, 174, 195
principle
of causality or determinism, 85
of equipresence, 126
of frame-indifference, 55, 93
of local action, 89, 116
of phase separation, 126

of smooth and local memory, 91,

116

reduced, 104

restriction by a global entropy, 3

solidlike phase, 111

with dilatation, 136

with dilatation and rotation, 183
Constitutive response, 88
Constraints, internal, 91, 117
Continua

superimposed, 2

theories, 3

with affine structure, 4
Couples

body, 3

resultant, 44
Covariance coeflicients

INDEX

of energy, 28, 45
of entropy, 30
of linear momentum, 26, 45
Crystal classes, 111
Curvature of the interface, 18
Deformation
affine or homogeneous, 37
function of phase, 23
gradient of phase, 23
local relative, 107
Density
local, 18
of mixture, 22
of phase, 22
Determinism, 88
Dilatancy in granular media, 5
Dilatation, 70
Divergence theorem of averaging, 21
Drag coefficient, 156, 168
Energy
equation, see Balance equations,
energy
internal
local, 18
of mixture, 28, 50
of phase, 28
kinetic
of center of mass, 46
relative to center of mass, 46
source, see Source, of energy
variable, 140
Entropy
equation, see Balance equations,
entropy
flux, 18, 30, 34
source, see Source, of entropy
Equilibrated
inertia, 3
of mixture, 50
of phase, 42
Equilibrium
process, 140
state for linearization, 144, 186
Euclidean
norm, 144, 187
space, 16, 55
Event, 55
Field equations, see Conservation
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of mass and Balance Equations
Flow of granular material, 175
Flow regime
inertial, 173
macroviscous, 173
Force
body, see Body force
equilibrated, 3
frame-indifference, 62
interaction, 45, 146, 157, 158,
187, 193
resultant, 44
Frame-indifference, 55
role in averaging theory, 14
Framing, 55
Galilean invariance, 15, 58
General equation of balance, 21
Granular media, see Materials
Group
isotropy or symmetry, 103, 104
Gyration
tensor
of mixture, 50
of phase, 39, 61, 70, 130
Heat flux vector
local, 18
of mixture, 29, 50
of phase, 146, 159, 187, 193
Heat generation rate
local, 18
of mixture, 29, 50
Helmholtz potential, 121, 140, 150,
158, 186
Homogeneous phase, 99
Hyperinertia, 42, 64, 149, 184,
189, 194
Hyperstress, see Intrinsic stress
moment, and Reduced intrinsic
hyperstress
Impenetrability hypothesis, 38
Incompressible phase, 178
Incompressibility constraint, 120
Inertia
equilibrated
of mixture, 50
of phase, 3, 42, 62
hyperinertia, 42
isotropic, 71
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Interaction force, 45, 146, 157,
158, 187, 193
Interface pressure, 143, 168
Internal
energy density moment, 45, 146,
188, 192 ‘
friction angle
dynamic, 173
static, 170
Interphase heat supply rate, 46
Intrinsic
motion, 3
stress moment, 43, 149, 188, 192
Invariants, 197
Isomorphism, 98
Isotropic
inertia, 71
mixture, 109, 115
Isotropy group, see Gronp,
isotropy
Kinematics of snperimposed
continua, 23
Kinetic theory, see Theory,
kinetic
Leibnitz’s theorem of averaging, 21
Linear momentum equation, see
Balance equations, linear
momentum
Local relative deformation, 107
Mapping
basic deformation postulate, 37
homeomorphic, 55
in volume averaging, 19
unimodular, 101
Mass, see Center of mass
conservation, see Balance
equations, mass
density, see Density
Material
derivative
of mixture, 24
of phase, 24
frame-indifference, 55, 93
isomorphism, 98
Materials
anisotropic, 3, 111
fluidlike, 114
granular, 3, 169
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homogeneous, 99 proper, 104
hyperelastic, 3 Orthotropic solid, 111
isotropic, 104 Particle
micropolar, 3 ' neighborhood, 90
micromorphic, 3 of phase, 23
orthotropic solid, 111 Phase
porous media, 3 definition, 1
solidlike, 111 homogeneous, 99
transverse isotropy, 111 isotropic, 104
triclinic system, 111 Phase change energy flux, 45
uniform, 99 Placement, relative, 106
Material point Polar decomposition theorem, 105
in deformation postulate, 37 Pressure
of phase, 16 configuration, 140
Memory, 91 hydrostatic, 120
Mixture interface, 143, 168
balance equations, see Balance thermodynamic, 140
equations, of mixture Process
concentrated, 162 admissible, 89
dilute, 164 calorodynamic, 88
fluidlike, 114 thermodynamic, 66, 85
inertionless, 162 thermokinetic, 88
isotropic, 104 Rayleigh bubble equation, 166, 169
multicomponent, 1 Reduced
multiphase, 1 constitutive equations, 104
nonlocal effect, 35, 37, 90 intrinsic hyperstress, 140, 159
of grade N, 91 Reference configuration, 16, 23
saturated, 118 Relative placement, 106
solidlike, 111 Rigid
with dilatation, 134 rotation of spatial frame, 95
with rotation, 183 translation of spatial frame, 93
without inertia, 162 Rotation
Mohr circle, 171 about center of mass, 38
Mohr-Coulomb yield criterion, 4, tensor
170, 172 about center of mass, 38, 70
Moment of internal energy vector, 70
density, 45 Saturation condition
Motion assigned to phase, 23 definition, 118
Newton’s law of action and in constitutive equations, 159,
reaction, 44 162, 191
Nonlinear constititive equations, 174, 195 Shearing flow between parallel
Nonlocal effect, see Mixture, plates, 175
nonlocal effect Shift of time, 94
Objectivity, see Frame-indifference Solids, see Constitutive equations
Orthogonal Source
tensor, 56 extrinsic, 3
tensor transformation interfacial, 18

improper, 104 intrinsic, 3
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of angular momentum, 27
of energy
of mixture, 29
of phase, 28, 46, 63, 76,
133, 162, 194
of entropy
of mixture, 31
of phase, 30
of equilibrated inertia, 42, 148, 185
of linear momentum
of mixture, 26
of phase, 25, 45, 63, 133
of mass, 25
Stress
couple, 3
extra, 140
hyperstress, see Reduced
intrinsic hyperstress
moment, see Intrinsic stress
moment
normal, 170
shear, 170
tensor
local, 18
nonlinear form, 199
of mixture, 26
of phase, 147, 157, 188, 192
Stretch tensor, 105
Supply, see Source
Surface
tension, 18, 168
traction moment, 43, 148, 157,
188, 193
Symmetry, see Group, symmetry
Temperature, 18
Tensor
alternating, 27
Cauchy-Green, 105
equilibrated of inertia, 42
gyration, 39, 61
hyperinertia, see Hyperinertia
intrinsic stress moment, 43, 149,
188, 192
orthogonal, 56
reduced intrinsic stress moment,
140, 159
rotation, 105
source of equilibrated inertia, 42,
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148, 185
stress, see Stress, tensor
stretch, 105
surface traction moment, 43, 148,
157, 188, 193
unimodular, 101
Theory

averaged, 5

averaging, 1

kinetic of mixtures, 174

of multiphase mixtures, 5, 19

postulatory, 1, 5, 77

variational, 80
Thermodynamic

pressure, 140

process, 66, 85

admissible, 89
Thermokinetic process, 88
Total energy balance, 46
Transverse isotropy, 111
Triclinic system, 111
Two-phase mixture, 155, 156,
160, 191

Uniform material, see Materials
Unimodular tensor, 101
Velocity

diffusion, 24

gradient, 24, 60

local, 18, 39

of center of mass, 40

of mixture, 22

of phase, 22, 24, 40
Viscosity

coefficients, 155, 190

of granular material, 177
Volume averaging, 19

properties, 33



