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MODELING OF STRUCTURED MULTIPHASE MIXTURES 

PLAVIO DOBRAN 
Applied Science Department, New York University, New York, NY 10003, U.S.A. 

Abstract-The usual modeling of multiphase mixtures involves a basic set of balance equations of 
mass, momentum, energy and entropy which are constructed by an averaging procedure or 
postulated. In modeling the structured multiphase mixtures, the intrinsic motion of particles can be 
described by an additional set of balance equations. Fundamental to the construction of the structured 
models of mixtures are the problems pertaining to the existence and number of these additional 
balance equations. By using the volume averaging procedure it is possible not only to derive the basic 
set of field equations, but also a very general set of additional balance equations which account for 
such properties as particle dilatation and rotation, demonstrating that the existing structured models 
of multiphase mixtures are very special eases of the material deformation. 

1. INTRODUCTION 

A multiphase mixture is characterized by the well-defined interfacial areas between the 
constituents of the mixture, with each phase having a smoothly varying chemical composition 
and steep gradients of properties close to the interface. In the mathematical modeling of such 
mixtures it should be, therefore, reasonable to employ the continuum field equations in each 
phase and provide the boundary conditions between the phases by another set of continuum 
field equations derived on the assumption that the interface can be modeled as a surface of 
discontinuity. The complexity of the continuum field equations and large number of interfaces 
which are commonly present in real multiphase flows prohibit, however, this modeling 
approach in favor of a more practical one. 

The postulatory theories of mixtures and the theories of mixtures based on the averaging 
procedures are the superimposed continua models which ignore the three-dimensional 
interfacial structure in modeling multiphase flows. The former theories are based on various 
postulates and their motivation comes from the single phase multicomponent mixture theories, 
generalized variational approaches, and special models of the material deformation (Goodman 
and Cowin [ 11, Passman [2], Bedford and Drumheller [3], and Ahmadi [4], among others). 
These postulatory theories employ both the basic set of field equations (mass, momentum, 
energy and entropy) and an additional set of balance equations to model the structural 
properties of mixtures without accounting for the detailed motions of interfaces. The averaging 
theories of multiphase mixtures employ time or spatial averaging of local macroscopic field 
equations of each phase and account for the structural properties of mixtures through the 
constitutive equations (Drew [5], Ishii [a], Nigmatulin [7], Hassanizadeh and Gray [8], Celmins 
and Schmitt [9], Dobran [lo]). As discussed by Dobran [ll], the time averaging procedure has 
a drawback of not clearly separating turbulence from other structural effects of the mixture and 
it precludes a consistent utilization of the principle of material frame indifference on the 
averaged field equations which is a very powerful tool to study constitutive equations. Except 
for the volume averaging procedure, other spatial averaging approaches introduce nonremov- 
able singularities into the models and consequently are not as suitable as the volume averaging 
approach to construct a consistent theory of mixtures. 

In this paper a structured theory of multiphase mixtures (Dobran [ll]) based on the volume 
averaging approach will be outlined. The utilization of the volume averaging procedure to 
construct a theory of multiphase mixtures strongly motivates the construction of a physical 
theory of mixtures, since it employs the well-established macroscopic field equations of each 
phase of the mixture. By adjoining to this procedure a basic deformation principle relating an 
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assumption of the motion of material particles relative to the center of mass it can then be 
shown that the resulting theory not only provides the basic set of field equations of multiphase 
mixtures, but also additional transport equations for modeling the structural characteristics of 
the mixture. The theory constructed in this manner reduces to the previous models of 
postulatory and averaged theories of mixtures only after considerably relaxing the material 
deformation assumption, The discussion of many details of the theory and results on 
constitutive equations is beyond the space limitations of this paper and the reader is urged to 
consult Dobran [ 1 l] for details. 

2. BASIC FIELD EQUATIONS OF MULTIPHASE MIXTURES 

2.1 Basic definitions and volume averaging procedure 

The volume averaging procedure consists of averaging the macroscopic field equations of 
each phase (mass, momentum, energy and entropy) over an arbitrary fixed volume in space. 
Figure 1 illustrates a flow field in an Euclidean space 5!3: which consists of homogeneous 

continua or phases (Y = 1, . . . , y. With each phase (Y is identified a subvolume U@‘) which 
moves through space and changes with time as a result of mass, momentum, and energy 
transfer processes taking place within the mixture. At some initial time to this volume is 

identified as V (uus) The surface of the volume Il(=@ is denoted by A(“&) which has a unit . 
normal vector nca6) and velocity S (“@. A material point P of phase cy is located within dLl(“” in 
the spatial configuration and within dV’““’ in the reference configuration or in an undeformed 
and unstressed state of the multiphase mixture where the point P is located by its spatial 

position vector X (Irs) As the material undergoes mechanical and thermal deformations, the . 
material point P moves to a position x(~@. The position vectors X’“’ and x(=) denote the center 
of mass positions of phase LY in the reference 
position vectors X(a6) and SC”‘) represent the 
mass as shown in Fig. 1. 

REFERENCE CONFIGURATION 

c\ $a81 

and spatial configurations, respectively, and the 
positions of the point P relative to the center of 

SPATIAL CONFIGURATION 

J 
MAPPED CONFIGURATION 

Fig. 1. Representation of a multiphase mixture in reference, spatial, and mapped configurations. 
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For each phase LY and volume V(@‘), use may be made of the local macroscopic conservation 
and balance equations of mass, momentum, energy and entropy for the non-polar media (see, 
for example, Eringen [12]) which may be expressed in the following compact form: 

where lj#(@, #*a), @(as) and B(a6) are variables which depend on the particular conservation 
and balance law and are given in Table 1. v is the gradient operator which operates in the 
space S& pcoa) is the mass density, v(@ is the velocity, @‘“) is the internal energy, sco6) is the 
entropy, T(06) is the stress tensor, qcae) is the heat tlux vector, r((ys) is the heat generation rate, 
bca6) is the body force per unit mass, and 0(*‘) is the temperature of a material point of phase 
(Y contained in V(crs). Assuming that the interface can be modeled as a surface of discontinuity, 
use can also be made of the following jump or boundary conditions (Eringen [12]) when 
equation (1) is integrated over an averaging volume. 

where 

(my + J(~6,,,+?) + (m(@I)\v(I%) + J(~O+,@l)) = Aka) 
(2) 

mW) = PW)(vW) _ SW) . nw) 
(3) 

is the interphase mass transfer rate and A(@ is the interfacial source term. This source term is 
given in Table 1 for the case of surface tension force, with e representing the surface gradient 
operator and v representing the surface tension coefficient. Notice in equations (2) and (3) that 
&# /.J, n(P% = -,,(8’I) and #“a) = ScB1)) for a subvolume 6 of phase (Y in contact with a 
subvolume 7 of phase /I. The condition 5 (a6)> 0 represents the local axiom of dissipation _ 
normally adopted in single phase models of continua (Truesdell and No11 [13]) and used in the 
present theory. 

The volume averaging procedure involves selecting an arbitrary fixed volume in space V as 
illustrated in Fig. 1 and averaging equation (1) over all subvolumes VCa6) of phase (Y in the 
volume V, = Cs V (=*) of phase (Y which is contained within V. The surface of VCab) which is 
fully contained within V is denoted by a(“@, whereas the surface of intersection of V(w6) with V 
is denoted by a (OS). The volume averaging procedure is then expressed by 

T lGU6, (equation (1)) dV = 0 (4) 

and has the property of mapping the entire contents of the flow field at time t in the averaging 
volume located in the spatial configuration into a point p(V) located at x, such that the mapped 
configuration space 5Z3 (to which x belongs) is the subspace of Si as schematically illustrated in 
Fig. 1. 

2.2 The general phasic equation of balance and basic field equations of multiphase mixtures 

Carrying out the procedure as expressed by equation (4) and using the Leibnitz’s and 
Divergence Theorems to interchange the integration and differentiation operators yields the 

Table 1. Coefficients of the conservation and balance equations 

Conservation 
or balance of J@a) B(*a) Aced) 

Mass 1 0 0 0 

Linear momentum vW) _T(=b) h(“b) 0 = (2Hvn + V,v (Orb) 
Angular momentum c A v@b) - r A T(=b) r A bcob’) 0 r I\ (A,Jcpb ) 

Energy &W + ;vW) . ,,W) ,,W) _ @WT,,(W b(“b). ,,(a@ ,SW (AJCu6’ = (2Hvn. S 
+ v,vs + v v, * S)‘“d’ 

Entropy +V 
b(“b) ,W) 
+W - f’=b’~o &=V (A,)@‘) 2 0 
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general equation of balance of phase CY 

where the volume-averaged quantities are defined as follows: 

In the discussion to follow use will also be made of the density-weighted average variables, Fa, 
partial variables, &, and phase average variables, Fe, i.e. 

(7) 

F,=+(F,) 

i’h- = (F,) 

The partial density of phase cy is defined as 

(8) 

(9) 

whereas the mixture density is obtained by summing up the partial densities of phases, i.e. 

P=DP, (11) 
n 

The velocity of phase cu, sl,, and the mixture velocity, v, are defined as 

(12) 

PV = 2 P3a 
(I 

(13) 

The above definition of phase velocity as the density-weighted velocity can be motivated by 
specializing equation (5) for the case of conservation of mass from Table 1, i.e. 

Gr ,+v.p,~,=~,+p,v.59=~a (14) 

where the backward prime affixed to pa indicates the material derivative following the motion 
of the cvth phase. The mass source term & represents the effect of phase change or chemical 
reactions and is expressed as 

The conservation of mass equation for the mixture as a whole is obtained by summing over a 
equation (14) and requiring that the mass sources satisfy C, 2, = 0. Thus 

iI+pv*v=o (16) 

where the dot over p denotes the material derivative of p following the motion of the mixture 
with velocity v. 
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The linear momentum balance of phase (Y is obtained from equation (5) and Table 1, i.e. 

/Q, = v * T’, + p& + pm (17) 

where fro is the linear momentum supply or source representing the momentum interaction 
between the phases as a result of mass transfer, interfacial forces, and structural characteristics 
of the mixture (see Dobran [ll]). 

The angular momentum balance of phase (Y represents the nonsymmetry of the phasic stress 
tensor TT, and can be written as 

lh,=T,--T; (18) 

where the superscript T over Te represents the transpose operation. The nonsymmetry of the 
stress tensor can be produced by particle spins, couple stresses, and body moments. 

The internal energy balance of phase (Y is obtained from Table 1 and equation (5), i.e. 

&in = tr(Tc V?,) - V - ijll + pnfn + Za (19) 

where the energy source e, results from interphase interactions and structural properties of the 
mixture (see Dobran [ll] for a detailed expression). 

The role of entropy in continuum mechanics is debatable and especially in mixture theories. 
Single phase multicomponent mixture theory (Bowen [14]) requires only the satisfaction of the 
global axiom of d&sip&ion or entropy inequality for the mixture as a whole, with the same rule 
being adopted in the construction of the postulatory theory of multiphase mixtures (Passman 
[2]). In the theory of multiphase mixtures which is consistent with volume averaging of local 
macroscopic field equations where the local axiom of dissipation has proven very useful in 
modeling, it should thus be legitimate to state that each sub-body 6 of phase LY produces 
f;(=‘) z 0 as stated in Table 1. From this table and equation (5) the entropy inequality for each 
phase can thus be established as 

where $a is the entropy source of phase (Y arising from interphase entropy transfer and 
structural characteristics of the mixture. This entropy source is not necessarily positive 
semidefinite. 

When the momentum, energy and entropy equations (17), (19) and (20) are summed over (Y 
to obtain the balance of linear momentum, energy and entropy for the mixture as a whole, the 
momentum, energy and entropy source terms (fin, 3, and 5,) do not necessarily add to zero as 
required in the single phase flow multicomponent theory of mixtures (Bowen [14]). The reason 
for this is that the mixture source terms in the present theory include the nonlocal effect as 
brought about by the volume averaging process and can be considered as the structural effect of 
multiphase mixture. This structural characteristics of the mixture can be seen more clearly by 
introducing an assumption of material deformation relative to the center of mass of each phase 
as discussed in the following section. 

3. THE MATERIAL DEFORMATION ASSUMPTION AND ADDITIONAL 

BALANCE EQUATIONS OF MULTIPHASE MIXTURES 

The single phase micromorphic theory of Eringen [15] and Twiss and Eringen [16] rests on a 
basic material deformation postulate. The construction of a structured theory of multiphase 
mixtures may also be based on a similar material deformation assumption where the material 
particles of each phase relative to the center of mass undergo a homogeneous deformation 
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expressed by the following equations: 

&$a*’ = I$$“K’zfc”W (21) 
&?V = $$clpW (22) 

This material deformation assumption implies that the motion of material of phase LY is 
comprised of an arbitrary deformation of the center of mass, a rotation of the mass points 
about the center of mass, and an affine deformation of material particles relative to the center 
of mass carrying ellipsoids into ellipsoids. 

Differentiating equation (21) it can then be shown that 

,&Ip”’ = I@~~i”b’ = fij$$$$W = v~~‘~j”“’ (23) 

where vj$) is the gyration tensor. If v&) is a skew-symmetric tensor, equation (23) then 
represents a rotation of material particles relative to the center of mass, whereas if 
vj$ = S,f(x, t) then this tensor represents pure dilatation or stretching. Using equation (23), 

&&WV 
“(nw= - ( ) 

&&a’ 

at x(4’ 
“(4 = - ( > at xc N 

(24) 

and 
x(aN = .(a) + ~(“6) (25) 

(see Fig. 1) gives a relation between the velocity of a particle of phase a, ~(~~1, and the center 
of mass velocity of the same phase, v(@, i.e. 

t@@ = @c”’ + viyW@W (26) 

Multiplying this equation by pCo6) and integrating over the volume of phase (Y contained in the 
averaging volume U as shown in Fig. 1 gives 

.(a) = f (I (27) 

since the center of mass of phase CY is defined by the following relation: 

Similarly, it can also be shown that 

a(“) = + (1 (29 

Thus the density-weighted velocities and accelerations of each phase are equal to the 
corresponding velocities and accelerations of the center of mass. These results are clearly a 
consequence of the material deformation assumption and do not follow directly from the 
volume averaging procedure. In this way the position x in the mapped configuration space in 
Fig. 1 may be associated with the center of mass of the mixture in the averaging volume U. 

The material deformation assumption expressed by equation (21) allows for the derivation of 
additional balance equations of multiphase mixtures for modeling the structural properties of 
the mixture. The balance equation for the equilibrated inertia is obtained by taking a moment 
about the center of mass of the conservation of mass equation (1) and performing volume 
averaging of the resulting expression, i.e. 

(30) 

or after some algebraic manipulations as described in Dobran [ll], we obtain 
. 

PrrL, - d&Ld - d%rkm) = -&L - Lukl) - (PaLmk,).m 

where iakl is the equilibrated inertia of phase (Y defined by 

(31) 

(32) 
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and iakl and Imnkl are the equilibrated source inertia and hyperinertia tensor, respectively (see 

[ll] for definitions) that must be determined by the constitutive equations. 
A balance equation for the equilibrated moments is obtained by taking a moment of the 

momentum equation (1) and integrating over the volume of phase (Y in the averaging volume 

producing: 

Pnlmjn(+!$’ + Vjp,)V$J) = S@j, + p,i,, + X,,,, - prrV~$Jmjn - P,V~Jfimk,miajq 

In this equation imjk is the body force moment 

xwjk,,, is the intrinsic stress moment 

and S,, is the surface traction moment defined by 

(33) 

(34) 

(35) 

(36) 

(37) 

that must be specified by the constitutive equations. 
The balance equations for the equilibrated inertia and moments reveal the structural 

properties of the mixture. They arise when the local force balance equation in each phase, 
representing the continuous distribution of forces, is replaced by an averaged equation. This 
result is thus consistent with the particle mechanics where the forces acting on a collection of 
particles may be replaced by a resultant force and a resultant couple. The extrinsic forces acting 
on the entire set of particles are thus replaced by a resultant body force 5, and a resultant 

couple ‘i,, whereas the forces acting on the surface of U, are replaced by a resultant surface 
traction force Tan, and a couple S,. In a continuum of each phase, the interparticle forces 

cancel out by Newton’s third law of action and reaction and there is no net resultant force. 
When a particle of small volume is isolated from the body, however, the internal forces 
produce a stress and a couple stress when the effect of the body on particle is considered in 
terms of the resultant forces and couples. The result of this, in the averaged field equations, is 
the existence of the stress field T’, and of a hyperstress field i,. 

The basic deformation assumption expressed by equation (21) also allows the momentum, 
energy and entropy sources (fro, Z. and &) to be expressed in terms of the structural properties 
of the mixture. Since these results are rather complicated, the reader is referred to Dobran [ll] 
for details. 

4. DISCUSSION 

The theory of multiphase mixtures outlined above reproduces the basic and additional 
balance equations of the averaged and postulatory theories of mixtures when the material 
deformation assumption expressed by equation (21) is simplified. A simple example of an affine 
deformation consists of rotation and dilatation which may be expressed as follows: 
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where & denotes the material derivative of a function @II of phase (Y expressing the 
dilatational rate, whereas O&F) is a skew-symmetric tensor expressing the rotational effect, i.e. 

fi$?) = - $a’ 9 Qa, = 0 (39) 

The function & representing the dilatation or stretching effect may be assumed to be the 
volumetric fraction of phase [Y in the averaging volume U. Such an association is clearly a 
constitutive assumption and may not be a valid choice as discussed below. 

Assuming the validity of the decomposition expressed by equation (38), setting @a to be 
equal to the volumetric fraction of phase cy, ignoring the rotational effect, and assuming that 
the inertia tensor b isotropic, i.e. 

~~ij = ~~Sij (4) 

produces the basic and additional balance equations which are consistent with the postdutory 
theories of multiphase mixtures. This consistency is particularly strong with the most developed 
theory of structured mixtures as proposed by Goodman and Cowin [l] and subsequently 
refined by Passman [2], and demonstrates that this theory has an existence within the volume 
averaging and very special assumption of the material deformation relative to the center of 
mass. This special theory has, however, a fundamental defect which is not apparent until a 
consideration is given to the theory of constraints of multiphase mixtures. This theory basically 
violates the incompressibility constraint 

(41) 

of the work expended per unit volume in phase LY due to this constraint which is required to 
vanish for all hydrostatic pressures pn. The details of this proof are somewhat long and will not 
be presented here. To resolve this problem it is only sufficient to revise the (somewhat 
arbitrary) assumption of the material deformation expressed by equation (38) to the following: 

(42) 

where c$,/& now represents the effect of dilatation. 
Based on the assumption expressed by equation (42) it is then possible to develop linear and 

nonlinear constitutive equations of compressible, incompressible, fluid and solids multiphase 
mixtures, with and without the dilatational and rotational effects of material particles relative 
to the center of mass of each phase. Such a study, which also involves a detailed discussion of 
the concepts and principles of the constitutive theory, is presented by Dobran [ll] and will not 
be repeated here. In the following I will only discuss some of the fundamental results to 
illustrate the capability of the presented theory to reproduce some well-known results of 
multiphase flows and its ability to predict novel phenomena. 

A linearized theory of constitutive equations for isotropic mixtures of fluids without the 
phase change can reproduce the Rayleigh-type bubble equation when the bubble volumetric 
fraction in a two-phase mixture is very small, i.e. 

(43) 

where 5 is the pressure, fil - /3* is the difference in configuration pressures that can be related to the 
surface tension and radius of curvature of the bubble (2a/R), & is the material density, R is the 
radius of the bubble, p* is an effective viscosity coefficient of the phases, i* is an effective 
inertia coefficient for liquid and bubbles, and where the subscript 1 and 2 denote the dispersed 
(bubble) and continuous (liquid) phases, respectively. The difference between equation (43) 
and the classical bubble equation (cit. Van Wijngaarden [17]) is a factor of 2 multiplying the 
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inertia term fifi in the former equation instead of 3/2. This difference in factors multiplying the 
inertia terms may be associated with the averaging procedure describing an average bubble in 

the mixture, whereas the classical bubble equation is derived by considering only one bubble in 
an infinite fluid. The effects of viscosity and phase compressibilities on the bubble growth have 
been discussed previously [17], whereas the effect of phase inertias has not and constitutes a 
novel feature in the bubble equation. 

Another result of the linearized theory of constitutive equations with structure is the 
prediction of a Mohr-Coulomb-type yield criterion of limited equilibrium in the limit when the 
multiphase flow is brought to rest. This prediction comes from the stress tensor result of the 
theory, showing that the phases can support nonzero shear stresses at rest in the presence of 
nonzero volumetric fraction gradients. This is an important and consistent result with the 
granular flow experiments (Savage [18]). 

The rotational and dilatational effects considerably complicate a linearized theory of 
constitutive equations and a full nonlinear theory becomes very complex and not practical [ll]. 
Since a linear theory is not fully adequate for modeling complex multiphase flows, the 
nonlinear effects should be introduced selectively; first in the phenomenological coefficients in 
the constitutive equations of a linear theory, and second in the full tensor representation of 
constitutive variables in terms of the invariants of independent variables in these equations. 

5. SUMMARY AND CONCLUSIONS 

Starting from the volume averaging approach and an assumption of the material deformation 
of each phase relative to the center of mass it is possible not only to establish the basic field 
equations of averaged and postulatory theories of multiphase mixtures, but also an additional 
(and much more general) set of balance equations to model the structural characteristics of the 
mixture. The basic field equations of conservation and balance of mass, momentum, energy 
and entropy describe the center of mass evolution of each phase, whereas the additional 
balance equations describe the evolution of phase properties, or structural characteristics, 
relative to the center of mass. These structural properties are the consequence of the nonlocal 
theory introduced by the volume averaging process and may be approximated to various 
degrees in future works. The theory also reproduces the well-known and classical results of 
multiphase flows and may be used for modeling of dense multiphase mixtures where the 
structural effects of the mixture may be very important. 
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