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PREFACE 

Vesuvius is today surrounded by a densely populated area. Within a radius of 
10 km of the crater live about one million people and within this distance and 50 km 
live another two million people, with the city of Naples being situated between 
Vesuvius on the east and the Phlegraean Fields on the west. In the last 20 000 years, 
this volcano has produced many plinian and smaller scale eruptions, and is most 
famous for its eruption in 79 A.D. when it buried the Greco-Roman towns of 
Pompeii and Herculaneum. Its 1631 subplinian eruption was even more devastating 
for the surrounding territory and for the first time made an important imprint on 
the Europeans during the Age of Reason or Enlightenment in the seventeenth and 
eighteenth centuries. Following this eruption, Vesuvius remained active until 1944 
with its many strombolian and lava flow eruptions. Since 1944, the presence of 
smoke has disappeared and the surrounding territory began to be veiled in asphalt 
and concrete, with the smoke remaining a postcard memory and the eruptions a 
distant foreboding. 

Vesuvius sleeps today and only some faint fumaroles within the crater and low- 
level seismic activity below its cone suggest that this mountain of fire is preparing 
for another of its colossal eruptions that could affect hundreds of thousands, if not 
millions, of people. Computer simulations predict that there is a high probability of 
a subplinian or plinian eruption occurring in the twenty-first century. For five 
centuries or more before the eruptions of "79 A.D. and 1631, the volcano remained 
quiescent and the people became complacent as the memory of past eruptions was 
gradually forgotten. A similar situation can occur again. Indeed, according to Os- 
servatorio Vesuviano in Naples and its parent institution Istituto Nazionale di 
Geofisica e Vulcanologia in Rome 'Tutto ~ sotto controllo' ('everything is under 
control'), thanks, so they claim, to the instruments that monitor the volcano and an 
evacuation plan that will allow everybody to escape on time during an emergency. 
This is, of course, an illusion due to the difficulty of separating tectonic from 
volcanic events, rapid rise of magma when the premonitory signals become clear 
that the volcano is erupting, and gross unreliability of the evacuation plan which to 
date has produced little peace of mind to many Vesuvians and no social and cul- 
tural progress that would emancipate hundreds of thousands of people from their 
difficult predicament. Meanwhile, the population around the volcano is becoming 
more complacent and many are convinced that Vesuvius will not erupt again. While 
it would be erroneous to promote a policy of eminent danger when this danger does 
not exist, it is equally erroneous to promote a policy of inaction, especially since we 
know that it is only a matter of time before Vesuvius wakes up. 

A decade ago an interdisciplinary project called VESUVIUS 2000 was proposed 
for the Vesuvius area. Unlike evacuation plans which tend to manage emergencies, 
this initiative aims at preparing the territory around Vesuvius to confront volcanic 
emergencies with minimum socio-economic and cultural consequences. What 
Vesuvians need is not so much a plan that tells them where to run in the event of an 
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eruption, but the creation of an environment that offers security from future erup- 
tions. VESUVIUS 2000 aims at achieving this objective while, at the same time, 
reducing the current state of social decay that is associated with limited economic 
opportunities. The danger from the volcano can be taken to advantage for pro- 
ducing a whole new secure and prosperous habitat for the people surrounding 
Vesuvius. The current evacuation plan has produced an unprecedented damage to 
the Vesuvius area, and, as long as it is being used as an instrument that only benefits 
special groups, there will be no prosperity for Vesuvians and these people will have 
to depend on their St. San Gennaro for protection. Since 1995, many Vesuvians 
have been educated on different risk management plans for the territory, but neither 
Italy nor the European Union has taken the Vesuvius problem seriously. Since 
Vesuvius is 'under control' why bother to produce a safer and more prosperous 
habitat for Vesuvians? 

A forum on VESUVIUS 2000, held on 2 and 3 September 2004 in Villa Campolieto 
in Ercolano, near the ruins of Herculaneum, provided an impetus to complete this 
book. The forum was attended by over one hundred local and foreign scientists, 
educators, students, and some authorities and lay people from the Vesuvius area. Its 
principal organizers, besides myself and members of my organization GVES, were 
Giuseppe Luongo, Giuliano Panza, and Bernadette de Vanssay from the Universities 
of Naples, Trieste, and Paris V, respectively. The first day of the forum involved 
technical sessions and the second one excursions to the ruins of Pompeii and Villa 
Augustus on the opposite side of the Monte Somma relief. The presentations at the 
forum were multidisciplinary and dealt with the structure of the volcanic system, 
modeling of eruption processes, education, socio-economic conditions, and civil 
protection. The excursions to Pompeii and Villa Augustus clearly demonstrated our 
fragility and weakness when confronting nature and our complacency with danger. 

This book should be useful to professionals and nonprofessionals alike, and, 
especially, to the populations of the Vesuvius area and other places around the 
world that face similar problems. It should also prove useful to those who want to 
familiarize themselves with the geographical, social, and cultural settings of the 
area, as well as to those who wish to know about the current understanding of the 
substructure of the volcanic system, the objectives of global volcanic simulation, 
and difficulties involved in managing risk in densely populated areas. The book 
should also be useful to educators, who teach primary, intermediate, and secondary 
school children and students about their environment, and volcanoes in particular. 

Because of the multidisciplinary issues considered here, students, professionals, 
lay public, and civil protection managers should find in this volume sufficient in- 
formation for further study, elaboration of topics, or adaption to their particular 
situations. The objectives of VESUVIUS 2000 need to be diffused to an audience 
beyond the Vesuvius area, for critical evaluation and comparison with analogous 
initiatives. We cannot embark on a serious path of risk mitigation in a densely 
populated area unless we fully understand the history, culture, and socio-economic 
conditions of the area and are willing to scrutinize every detail of our intended 
actions and fully expose our projects to constructive criticism. A mitigation and risk 
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management plan which is hidden from the public, and its architects refuse to 
discuss it publicly and away from professional audience, does not serve any useful 
purpose, especially for those living in the close proximity of Vesuvius. 

The book is divided into seven chapters, with each chapter providing a summary 
in both English and Italian. Following this preface, the book provides an extended 
summary of VESUVIUS 2000 in Italian. The Appendix of Chapter 2 is in Italian 
and provides a global perspective of the territory as seen by a group of intermediate 
students of the Vesuvius area. The Appendix of Chapter 3 is the Italian version of 
this chapter. The color versions of black and white figures of in Chapter 2 are 
collected at the end of the book, and the extensive Notes in Chapters 1 and 2 
elaborate on the historical, cultural, and scientific aspects of the area and beyond. 

Chapter 1 presents the difficulties associated with the management of volcanic 
risk in the Vesuvius area and the principal objectives of VESUVIUS 2000 which 
aim at transforming the area into a secure and prosperous region. The topics in this 
chapter deal with Vesuvius consciousness, security culture barriers, habits of mind 
that prevent the Vesuvians from judging different risk reduction strategies, the 
grand challenge associated with the protection of people and territory from the 
volcano, and VESUVIUS 2000 objectives and methodologies. VESUVIUS 2000 is 
divided into three interrelated topics: Physical environment, which deals with the 
development of Global Volcanic Simulator and its use for assessing the effects of 
different eruption scenarios; population, which addresses the social, economic, and 
educational issues of the people; and territory, which deals with the area infra- 
structures, urban planning, and civil protection. 

Education of children and adults so that they become Vesuvius-conscious cit- 
izens is discussed in Chapter 2. Different age groups of students imagine things 
differently, and it is the aim of education to take advantage of those tools which 
produce the greatest developments in children. This chapter thus addresses the cog- 
nitive tools available to us and how these tools can be used to educate the primary, 
intermediate, and secondary school children about Vesuvius. We, therefore, discuss 
educational ideas, kinds of understanding, educational methods, and teaching 
methodologies. Educating adults about Vesuvius is also important, especially 
in decreasing their technological illiteracy, because this is preventing many from 
seeing how the modern technology can liberate them from their difficult predica- 
ment. As examples, we discuss several educational efforts in the Vesuvius area, 
including those from schools, nonprofit and professional organizations, lay public, 
and others. 

The social and economic reality of the Vesuvius area is addressed in Chapter 3. 
Eighteen communities of more than 500 000 people border the crater of the volcano 
and, during the last decade, some 30 000 people have left the area for better op- 
portunities and lower risk elsewhere. The educational level of most people living 
near the volcano is low and, officially, only one-fifth of the population works. Their 
main economic activities are services, scattered agriculture, and some manufactur- 
ing. This kind of environment breeds crime and offers few bright prospects for 
future generations. 
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Chapter 4 presents geophysical precursors of Vesuvius from historical and ar- 
cheological sources. The eruption of Vesuvius in 79 A.D. was preceded by a large 
magnitude earthquake in 62 A.D. that caused an extensive damage. This and sev- 
eral other events thereafter suggest that the towns surrounding the volcano expe- 
rienced significant problems before this famous eruption. The eruption of 1631 was 
also preceded by seismic activity for several hours, and perhaps for a longer time. 
The last significant earthquake occurred in 1999 and the recent seismicity has been 
maintained below the magnitude 4 on the Richter scale. 

The characteristics of ballistic debris emitted from Vesuvius during the eruption 
of 79 A.D. are discussed in Chapter 5. This debris, with block sizes of up to 1 m, is 
common in the deposits of this eruption and reached distances in excess of 10 km 
from the crater. Modeling of the ballistic shower is, however, in its infancy and not 
reliable enough to be used today as a tool for the hazard assessment associated with 
this kind of material being ejected from the volcano. 

Our current understanding of the substructure of Vesuvius and that of the 
nearby Phlegraean Fields is presented in Chapter 6. This understanding comes from 
the natural seismicity of the volcano and seismic tomography experiments that have 
been conducted in the 1990s. At that time, I was one of the promoters of such 
experiments for collecting data that could be used for the validation of Global 
Volcanic Simulator. Since then, many such studies have been made and their results 
suggest that both the Vesuvian and Phlegraean areas have low seismic wave velocity 
layers at a depth of about 10 km and that, therefore, there is no evidence of magma 
in the superficial regions of the volcano. According to these works, the volcanic 
conduit is currently sealed and magma resides in a diffused crustal magma reservoir 
which is fed by a regional one within the uppermost mantle. 

Global Volcanic Simulator is the key tool for both ascertaining the effects of 
different eruption scenarios on the territory surrounding the volcano and producing 
a new habitat for Vesuvians where they can live safely from future eruptions. In 
Chapter 7, we discuss physical modeling~ numerical, and computer implementation 
issues related to the development of such a simulator. We have already developed 
several useful models for simulating magma chamber dynamics and magma ascent 
in volcanic conduits, and are currently developing a nonequilibrium multiphase and 
multicomponent atmospheric dispersion model and its associated computer code. 
This model accounts for two-way turbulence coupling between the gaseous and 
particulate phases, condensation and evaporation of volatiles, aggregation and 
fragmentation of pyroclasts, and chemical reactions among the components of 
different phases. Our objective is to resolve the effects of pyroclastic flows on small 
and large structures located on the territory surrounding the volcano, determine the 
fallout characteristics of tephra and ballistic blocks, and ascertain the consequences 
of plinian plumes transporting the volcanic debris high into the stratosphere during 
and after an eruption. A practical global simulator must be able to simulate differ- 
ent eruption scenarios and determine their effects on the people and infrastructures, 
with and without engineering measures aimed at protecting the area surrounding 
the volcano. 
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During the last decade, we have only made a modest progress in achieving the 
objectives of VESUVIUS 2000, because of a politicized evacuation plan that dis- 
tances independent initiatives and stifles collaboration on this volcano. We have 
made, however, a significant effort in promoting education and collaboration, and 
managed to involve many schoolteachers and their students on different topics 
associated with Vesuvius. Regretfully, the people's representatives in Italy are using 
the flawed evacuation plan as an instrument for discharging their own responsi- 
bility, while the institutions of higher learning and research centers are not suffi- 
ciently responsive to help design a safe and prosperous habitat for Vesuvians. We 
need to get rid of negative habits of mind and force ourselves beyond our personal 
interests and traditions, and thus attempt to construct a higher level of civilization. 
VESUVIUS 2000 proposes a technologically-grounded approach to territorial risk 
management which is dramatically different from other plans. As a consequence, it 
needs time to bear fruit to the people whose ancestors are the founders of Western 
Civilization. 

Flavio Dobran 
January 2006 
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Chapter 7 

Global Volcanic Simulation: Physical Modeling, Numerics, 
and Computer Implementation 

F. Dobran and J.I. Ramos 

Considerate la vostra semenza: fatti non foste a viver come bruti, ma per seguir virtute e 
conoscenza. 

Dante, iXXVI 

A B S T R A C T  

Physics-based, efficient and reliable simulations of the effects of volcanic erup- 
tions on the surrounding territories are not feasible today. This is, in part, due to 
the difficulty of incorporating all relevant volcanic and atmospheric processes that 
occur in a volcanic eruption into an all-inclusive multiphase and multicomponent 
physical model. But, even if such a model were available, there would also be 
difficulties in solving the resulting mathematical equations accurately and effi- 
ciently, and with enough spatial and temporal resolution, on current computers. 
Global volcanic simulation requires incorporating different types of models into a 
simulation package or Global Volcanic Simulator. These models include those 
pertaining to magma chamber dynamics, opening of volcanic conduits, magma 
ascent, and atmospheric dispersion of pyroclasts. During the past decade, we have 
developed several such models which are described elsewhere. As these models have 
disparate time and length scales, each must be carefully verified and validated 
before it can be integrated into the global simulator. This chapter presents our work 
on a new pyroclastic dispersion model and its numerical and computer implemen- 
tation on available computers. 

The structural model of multiphase mixtures presented here includes mass, mo- 
mentum, energy, and turbulence coupling between the gaseous and particulate 
phases, and its microphysics accounts for the effects of condensation and evap- 
oration of volatiles, fragmentation and aggregation of particulates, formation of 
precipitation from heterogeneous condensation, and gas-particle-turbulence mod- 
ulation. The resulting non-equilibrium multiphase and multicomponent flow model 
includes separate transport equations for each Eulerian and Lagrangian phase of 
the mixture and an additional set of transport equations that account for the mix- 
ture's structural characteristics. This allows for both the coupling between different 
scales and the exchange of energy between large and small eddies in the plume. 
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Before implementing a numerical solution methodology, we have carried out 
detailed studies on the simulation requirements, accuracy of different numerical 
solvers, and tradeoffs of different parallel computer paradigms. The adopted strat- 
egy involves domain decomposition at both the physical and algebraic levels, and 
second- and third-order accurate numerical discretization schemes for the advection 
terms, multiblock grids, and iterative Krylov subspaces methods that are suitable 
for implementation on multiprocessor environments. This strategy permits simu- 
lations of high rising and widely dispersing plinian columns as well as of those 
columns that collapse and produce pyroclastic flows and surges. Following the 
current verification stage, the resulting physico-mathematical-computer model will 
be validated with data from several well-known eruptions, including those from 
Vesuvius, before other models for the magma chamber dynamics, opening of 
volcanic conduits, and magma ascent are incorporated into a global simulation 
package for the prediction of volcanic eruptions. The resulting Global Volcanic 
Simulator will be employed for achieving some of the key objectives of the 
VESUVIUS 2000 project. 

R I A S S U N T O  

Simulazioni, basate sui principi della fisica, efficienti ed attendibili, degli effetti 
delle eruzioni vulcaniche sul territorio circostante non sono attualmente possibili. 
Questo 6 in parte dovuto alla difficolt~i di includere tutti i processi vulcanici ed 
atmosferici rilevanti, che si verificano durante una eruzione, in un unico modello 
fisico multifase e a molte componenti. Ma, anche se tali modelli fossero disponibili, 
ci sarebbero delle difficolt~, nel risolvere, con i computer ora disponibili, in modo 
accurato ed efficiente e con sufficiente risoluzione spazio-temporale, le equazioni 
matematiche risultanti. La simulazione globale del vulcano richiede l'inserimento di 
diversi modelli in un pacchetto di simulazione ovvero in un Simulatore Vulcanico 
Globale. Questi modelli comprendono quelli relativi alla dinamica delle camere 
magmatiche, alla apertura dei condotti vulcanici, alla risalita del magma ed alia 
dispersione nell'atmosfera dei prodotti piroclastici. Negli ultimi dieci anni, sono 
stati sviluppati alcuni di questi modelli che sono descritti in altre pubblicazioni. 
Poich6 questi modelli hanno scale spazio-temporali alquanto disparate, ciascuno di 
essi deve essere attentamente verificato e convalidato prima di poter essere incluso 
nel Simulatore Globale. Questo capitolo descrive lo sviluppo di un nuovo modello 
di dispersione piroclastica e la sua implementazione numerica sui calcolatori di- 
sponibili attualmente. 

I1 modello strutturale delle miscele multifase presentato in questa sede comprende 
l'accoppiamento di massa, momento, energia e turbolenza tra le fasi gassosa e 
particolata, e la relativa microfisica tiene conto degli effetti di condensazione ed 
evaporazione dei volatili, frammentazione ed aggregazione del particolato, forma- 
zione della precipitazione dovuta a condensazione eterogenea, e modulazione della 
turbolenza gas-particella. I1 risultante modello di flusso multifase e multicompo- 
nente comprende equazioni di trasporto separate per ciascuna fase Euleriana e 
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Lagrangiana della miscela ed un ulteriore insieme di equazioni di trasporto, che 
tengono in conto le caratteristiche strutturali della miscela stessa. Ci6 permette sia 
l'accoppiamento fra diverse scale sia lo scambio di energia fra vortici piccoli e 
grandi nel pennacchio. 

Come passo preliminare alla implementazione di una metodologia basata su 
soluzioni numeriche, 6 stata realizzata una serie di studi dettagliati sui requisiti della 
simulazione, accuratezza dei diversi risolutori e compromessi tra i paradigmi di 
diversi calcolatori paralleli. La strategia adottata richiede la decomposizione del 
dominio sia a livello fisico che algebrico, e la costruzione di schemi accurati di 
discretizzazione al secondo ed al terzo ordine per i termini di advezione, griglie 
multiblocco, e metodi iterativi nei sottospazi di Krylov, che sono adatti per la 
realizzazione dei codici in ambiente a multiprocessore. Questa strategia permette la 
simulazione sia di colonne pliniane molto elevate e molto disperse che di quelle che 
collassano e producono flussi piroclastici e surges. Completato lo stadio di verifica, 
il modello fisico-matematico-numerico risultante sarfi validato utilizzando dati di 
svariate eruzioni ben conosciute, comprese quelle del Vesuvio, prima che altri mo- 
delli per la dinamica delle camere magmatiche, l'apertura dei condotti vulcanici e la 
risalita del magma siano incorporate nel pacchetto per la simulazione globale per la 
previsione di eruzioni vulcaniche. I1 Simulatore Vulcanico Globale sarfi utilizzato 
per realizzare alcuni degli obiettivi chiave del progetto VESUVIUS 2000. 

7.1. I N T R O D U C T I O N  

Hundreds of thousands of people in Mexico, the Philippines, Japan, Indonesia, 
Italy, and other underdeveloped and developed countries live very close to some of 
the most dangerous volcanoes. For example, within a radius of 10 km of the Taal 
volcano in the Philippines live about 200000 people and within 20km, 500000 
people. Within 10 km of the Galeras volcano in Colombia live some 300 000 people, 
and within 20km of Fuji in Japan and Popocatepetl in Mexico live 500000 and 
200000 people, respectively. Within a radius of 10km of Vesuvius live about 1 
million people and within 20 km more than 2 million people. In the nearby Phlegra- 
ean Fields, the situation is similar, and a large-scale eruption at either of these 
places would affect, at least, 3 million people who reside on the Campanian plain. 
The main hazards from these Neapolitan volcanoes are the fall of ash and large 
blocks, pyroclastic flows, mudflows, and avalanches. Sakurajima in Japan, Mayon 
in the Philippines, Santa Maria in Guatemala, and Mt. Rainier in the United States 
pose analogous risks to densely populated areas, including the potential for pro- 
ducing catastrophes, massive human displacements, and losses of property in the 
event of large-scale eruptions. 

People can live safely and in harmony with volcanoes only if their potential 
danger can be reliably assessed and measures taken to convince the public that it is 
safe to live at sufficient distances from the craters. Ash fall from an eruption can 
affect thousands of square kilometers, while the pyroclastic flows and mudflows can 
destroy everything on their paths in a matter of minutes unless adequate protection 
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measures have been placed into effect. If inadequately protected, people's dwellings 
and city infrastructures can be wiped out and those who manage to escape are 
forced to start life all over. 

What to do with about 1 million Vesuvians and an equal number of those living 
in the Phlegraean Fields is a problem of unprecedented proportions, and neither the 
people who are exposed to the danger nor their representatives at local and national 
governments are taking this problem very seriously. The volcanologists' solution to 
this problem (Protezione Civile, 1995) is too simplistic and grossly inadequate for 
this territory, for it envisages the possibility of evacuating hundreds of thousands of 
people on a short notice and in a probable state of panic albeit in the absence of 
reliable evacuation infrastructures. Such a policy tends to manage the catastrophe, 
protects the benefactors of evacuation plan architects, and promotes inaction on the 
part of people's representatives. VESUVIUS 2000 (Dobran, 2006) works instead in 
the direction of prevention. Its aim is to use modern technology to produce a new 
habitat for Vesuvians where they can live in safety and prosperity, and confront 
future eruptions with minimum socio-economic and cultural consequences. Such a 
habitat should be sufficiently far from the volcano and adequately protected to 
sustain the full fury of the volcano. 

The key tool for determining the effects of future eruptions on the territory sur- 
rounding a volcano is Global Volcanic Simulator (Dobran, 1993, 1994a,b), or a 
physico-mathematical-computer model of the entire volcanic complex. Such a sim- 
ulator incorporates physical and chemical models of all conceivable eruption processes 
within the volcano and in the atmosphere above it, and through a probabilistic anal- 
ysis determines the likelihood of different eruption scenarios and their consequences 
on the territory surrounding the volcano (Dobran, 2006). Therefore, the predictions of 
a Global Volcanic Simulator could be used for urban planning the territories in 
densely populated areas around volcanoes, developing adequate infrastructure for 
protecting humans and animals in the event of volcanic eruptions, etc. Such a global 
volcanic model employs geological and geophysical data pertaining to the origin and 
composition of volcanic deposits, underground reservoirs of water, magma and lava 
flows, strength, elasticity and plasticity of magmas, lavas, and surrounding rocks and 
soils. In the atmosphere, the simulator accounts for mixing and chemical reactions of 
the material discharged from the volcano with the air constituents, and determines the 
dispersion of this material in the proximal and distal regions from the vent. 

A useful Global Volcanic Simulator of Vesuvius should be able to resolve the 
effects of tephra fall and pyroclastic flows on different types of structures (such as 
houses and infrastructures) and track the dispersion of pyroclasts high into the 
stratosphere and for hundreds of kilometers in lateral directions under different 
atmospheric conditions for 50 h or more of intermittent and intense volcanic ac- 
tivity. These requirements are extremely demanding from both the physical and the 
computational perspectives and no current generation pyroclastic dispersion model 
is able to meet these requirements. 

Previous models of pyroclastic dispersions are two-dimensional and contain 
rather simple physics. For example, the models of Valentine and Wohletz 
(1989) and Dobran et al. (1993) are two-dimensional velocity and temperature 
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non-equilibrium two-phase and multiphase flow models, respectively. The latter 
model is based on a granular kinetic theory which includes a transport equation for 
the granular temperature and different pressures for the gaseous and solid phases. 
Both of these models include eddy diffusivity turbulence models for the gas phase, 
ignore two-way turbulence coupling between the solid and gaseous phases, and lack 
the necessary microphysics to account for condensation, evaporation, and chemical 
reactions of plume constituents. The model of Neri and Macedonio (1996) uses the 
same physics and computer code as the one of Dobran et al. (1993), except that the 
authors specify two instead of one particle classes in their simulations and do a poor 
job of verifying the numerical calculations. This granular flow model utilizes a 
staggered grid and a semi-implicit numerical procedure, and produces unacceptably 
large numerical diffusion errors for the grids used in the simulations. The model of 
Dartevelle (2004) is also a granular flow model that is based on the work of Syamlal 
(1998). It uses the same transport equations to those of Dobran and co-workers and 
a more complete set of constitutive equations which account for the description of 
particulate behavior at high particle concentrations. The results pertaining to nu- 
merical simulations based on this model and reported in Dartevelle et al. (2004) 
should, however, be viewed with caution, since the model does not account for 
condensation which normally occurs soon after the eruption. Oberhuber et al. (1998) 
and Herzog et al. (1998) adapted a velocity and temperature equilibrium model from 
meteorology to volcanic plumes. This model accounts for silicate particles through 
their settling velocities and includes the phase change of water vapor and the growth 
of cloud droplets, ice crystals, raindrops, and hail-size groupel particles. The inter- 
action between water and silicate particles is ignored and the presence of volcanic 
gases in the plume is not taken into account. The model includes a transport equa- 
tion for turbulent kinetic energy of the gas phase, but its limitations arise from the 
assumptions of mechanical and thermal equilibrium between the phases, the absence 
of interactions between ash particles and plume hydrometeors, and the neglect of the 
effects of volcanic gases (such as SO2, H2S, and HC1) on plume dynamics and 
thermodynamics. The model of Ongaro et al. (2004) attempts to extend the model of 
Dobran et al. (1993) to three-dimensional multiphase flows. 

In the early 1990s, the Italian geological and geophysical communities did not 
continue supporting the development of an effective simulator for Vesuvius, in spite 
of an intense and productive initial effort (Dobran and Mulargia, 1991; Dobran 
et al., 1991, 1993, 1994; Dobran, 1992, 1993, 1994a,b, 1995; Dobran and Papale, 
1993; Papale and Dobran, 1993, 1994; Giordano and Dobran, 1994; Macedonio 
et al., 1994; Coniglio and Dobran, 1995; Dobran and Luongo, 1995; Ramos, 1995, 
1999; Dobran and Coniglio, 1996) which demonstrated the feasibility of this 
project. The development of this simulator continued elsewhere and some of its 
models are described in Dobran (2001) and in this work. The development of such a 
simulator includes models for the magma chamber dynamics, opening of the vol- 
canic conduit, magma ascent in volcanic conduits, and pyroclastic dispersion. 

The magma chamber dynamics model simulates the evolution of magma res- 
ervoirs for hundreds or thousands of years and forecasts a subplinian or plinian 
eruption of Vesuvius in the twenty-first century with a high probability. The opening 
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of volcanic conduit model accounts for the conditions of magma in magma reservoir 
and yield stress characteristics of overlying rocks, and predicts a very rapid magma 
ascent once the instability sets in. Several magma ascent models simulate steady- 
state, and transient melting and solidification processes in volcanic conduits. These 
include the effects of gas exsolution, magma fragmentation, and erosion on conduit 
flow dynamics. 

Further use of the pyroclastic dispersion model of Dobran et al. (1993) was 
abandoned because of its outdated semi-implicit and staggered grid numerical al- 
gorithms, which result in unacceptably long computation times and accumulation 
of numerical diffusion errors. In addition, this model lacks the necessary micro- 
physics associated with phase changes, chemical reactions, and two-way turbulence 
coupling between the gaseous and solid phases. Our former collaborators are, nev- 
ertheless, still using this code as well as other models that were developed in col- 
laboration (Neri and Macedonio, 1996; Ongaro et al., 2002; Todesco et al., 2002; 
Zuccaro and Ianniello, 2004). 

This chapter deals with some of the issues associated with the development of an 
effective pyroclastic dispersion model for the Global Volcanic Simulator. In Section 
7.2, we summarize a multiphase and multicomponent physical model which is 
considerably different from existing ones. This thermohydrodynamic (velocity, 
pressure, and temperature) non-equilibrium model includes the effects of phase 
changes, chemical reactions, aggregation and fragmentation of liquid and solid 
particles, turbulence coupling between the gaseous phase and particulate matter, 
and the structural characteristics associated with phase inertia and dilatation and 
contraction effects. The solution of the resulting modeling equations employs state- 
of-the-art numerical procedures and domain decomposition (DD) methods for 
efficient and accurate simulations. The numerical solution procedures and choices 
for an effective solution of the resulting physico-mathematical model are discussed 
in Section 7.3. In Section 7.4, we address computer implementation issues for the 
purpose of producing accurate and effective simulations of plinian and collapsing 
volcanic columns. 

Interactions between volcanic products and atmospheric constituents include 
different time and length scales which produce both physical and numerical mod- 
eling difficulties. Our physical model accounts for the coupling between these scales 
and our numerical solution strategy is presently being verified to insure that it 
correctly and efficiently solves the mathematical equations under a wide variety of 
conditions within an acceptable error tolerance. The subsequent task of validation 
requires that the mathematical solutions agree with observed physical and chemical 
processes of eruptions. Only after these two tasks have been carried out satisfac- 
torily can the resulting pyroclastic dispersion model be integrated with the magma 
chamber and magma ascent models into a simulation package or Global Volcanic 
Simulator. Poor verification of computer code calculations can only produce dam- 
age to the community that lacks the knowledge to evaluate complex multiphase 
models and the accuracy of the corresponding numerical calculations. Too many 
technical papers and reports approach the issues of verification and validation in a 
haphazard and piecemeal manner (Roache, 1998a). 
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7.2. P H Y S I C A L  M O D E L I N G  

7.2.1. Products of  volcanic eruptions 

Volcanic eruptions produce different size particles and many volatile and gas- 
eous species which arc originally dissolved in the magma and bonded in different 
minerals. One can observe eruptions directly and sample the plume or measure the 
products on the ground during or after the eruption. The results from these two 
approaches can be different, however, because of the aggregation processes which 
tend to produce clusters of fine particulates and fragmentation processes that pro- 
duce fine particulates from large particles. These clusters usually fall closer to the 
vent than the particulate matter from which the clusters arc made or their disper- 
sion depends of their size and processes within the plume. Explosive volcanic 
eruptions have extremely varied characteristics (Walker, 1981; Cas and Wright, 
1993). 

The pyroclastic deposits contain juvenile fragments from the breakup or frag- 
mentation of magma, glasses and crystals from rapid cooling of magma in conduits 
and atmosphere, and lithic fragments from the erosion of rocks pertaining to the 
volcanic edifice itself. These products have different densities and shapes and thus 
contribute to particulate fractionation. Lithic fragments tend to be coarser than 
the associated juvenile products and, therefore, tend to fall out from the eruption 
column close to the vent. Due to the moisture, electrostatic forces in the at- 
mosphere, and the large surface area/mass ratio of glass fragments, the fine ash 
(less than about 50 m~) can aggregate into particles of several hundred microns and 
thus also fall close to the vent and hence contribute to the multimodal spectrum of 
ash particles that is observed in many field deposits (Carey and Sigurdsson, 1982; 
Brazier et al., 1983; Rose ct al., 1983). 

A wide variety of volcanic processes can produce these products. Inside vol- 
canos, magmas with different chemical compositions fractionatc and cool in the 
magma reservoirs or chambers before ascending toward the surface through differ- 
ent types of fissures, fractures and conduits that may or may not be surrounded by 
underground aquifers. Magma can interact with water in these aquifers and thus 
produce phrcatomagmatic eruptions that release large quantities of water which can 
act as a binding agent for particle aggregation (Veitch and Woods, 2001; Tcxtor and 
Ernst, 2004). 

Poorly degasscd silicic magmas (such as dacitcs and rhyolitics) fragment in 
conduits and exsolve volatile species (including trace metals) as they ascend toward 
the surface. Many of these fragments subsequently break up into smaller ones 
through collisions and interactions among themselves and with conduit walls. Some 
volatile species condense as they ascend and arc adsorbed on the particulates. Once 
discharged into the atmosphere, the fragmented and cxsolved magmatic species 
interact among themselves and with the gaseous, solid, and liquid phases, and thus 
contribute to the dissolution of species into the aqueous phase, gas-particle reac- 
tions, aqueous phase reactions, fragmentation and agglomeration of solid and liq- 
uid particles, and so on. Reviews of some of these processes arc available in Robock 
(2000), Dobran (2001), and Mathcr et al. (2003). 
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Volcanic processes also release large quantities of gases which are dominated by 
water vapor (H20), carbon dioxide (CO2), and sulfur dioxide (SO2). These are 
followed by smaller concentrations of hydrogen (H2), hydrogen sulfide (H2S), hy- 
drochloric acid vapor (HC1), hydrogen fluoride (HF), carbon monoxide (CO), and 
many other elements and compounds which contribute to the aerosol budget of the 
volcanic plume (Symonds et al., 2001; Mather et al., 2003). 

Once discharged into the atmosphere, the emissions are cooled, diluted, and 
oxidized by air. There, they trigger a complex set of reactions (Ammann and 
Burtscher, 1993) and produce aerosols of liquid and solid particles. The aerosols 
aggregate into cloud condensation nuclei on which rain droplets are formed 
(Wagner, 2000). Volcanic H20 vapor, CO2, and HF are stable, H2 and CO oxidize 
to H20 and CO2, respectively, and the sulfur compounds react with water to pro- 
duce sulfuric acid (H2804) aerosols (Laaksonen, 2000). These aerosols can then 
react with nitrogen oxides (NOx) to produce nitric acid (HNO3) gas which lowers 
the critical supersaturation for droplets and thus increases the number of activated 
droplets (AGU, 1992; Brasseur and Granier, 1992; Charlson et al., 2001). 

Submicron mineral dust particles ejected by volcanoes and other natural proc- 
esses also act as condensation nuclei and are effective nuclei for ice formation and 
intense precipitation (Koop, 2000; Ramanathan et al., 2001; Graf, 2004). Electro- 
static forces and the adsorption and condensation of gases onto ash particles 
produce aggregation of particulates into near-millimeter size clusters or into the 
so-called accretionary lapilli that readily fall out from the eruption column 
(Sheridan and Wohletz, 1983; Rose et al., 1995; Schumacher and Schmincke, 1995). 
Fig. 7.1 summarizes some possible volcanic plume pathway processes pertaining to 
gas-gas, particulate-particulate, and gas-particulate interactions. 

The amounts of gases and volatiles ejected into the atmosphere depend on the 
total eruption rate and magma composition. E1 Chich6n in Mexico in 1982 and 
Mount Pinatubo in the Philippines in 1991 each discharged several cubic kilometers 
of material and released large quantities of SO2 and HC1 into the atmosphere. 
Pinatubo, for example, released some 20 Mt of SO2 and 4.5 Mt of HC1 (Westrich 
and Gerlach, 1992, quoted in Tabazadeh and Turco, 1993). 

Sulfur compounds react with water vapor and produce sulfate aerosols in the 
stratosphere, where they scatter light and may produce global scale weather changes 
(Luhr, 1991; Robock, 2000; Blake, 2003; Scaillet et al., 2003). Hydrogen halides 
HC1 and HBr are highly soluble in liquid water and are, therefore, principally 
scavenged in the troposphere by the condensed water vapor (Tabazadeh and Turco, 
1993), but, in eruptions with little water, significant quantities can reach the strat- 
osphere where they can reduce the stratospheric ozone (Textor et al., 2003). SO2 
and H2S are only slightly soluble in water and easily reach the stratosphere. Pre- 
cipitation and wet ash particulates thus remove SO2, HC1, HF, and other volcanic 
gases in one part of the atmosphere and may re-introduce these gases in another 
part where the water evaporates. The large sulfuric acid particles typically contain 
volcanic ash particles (Pueschel and Russell, 1994). Condensing water vapor re- 
leases the latent heat and causes the plume to ascend even higher (Glaze et al., 
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Fig. 7.1. Illustration of possible interaction pathways in a volcanic plume consisting of aerosols and 
silicate particles; water vapor, water droplets, and ice crystals; atmospheric and volcanic gases; and 
raindrops. 1: Aerosols/particulates-plume (nucleation scavenging); 2: Plume-aerosols/particulates 
(condensation/sublimation of water vapor); 3: Gases-plume (dissolution reactions); 4: Plume-gases 
(evaporation); 5: Plume-rain reactions, 6: Aerosols/particulates-rain (aggregation); 7: Rain-aerosols/ 
particulates (evaporation); 8: Gases-rain (below plume scavenging); 9: Rain-gases (evaporation); 
10: Gases-aerosols/particulates adsorption reactions, 11: Aerosols/particulates-gases reactions; 
12: Tephra fall; and 13: Precipitation. 

1997), while the evaporation of water and melting of ice cause the plume to loose 
energy. The energy in the plume is thus distributed between different layers of the 
atmosphere and this distribution changes during an eruption. Moreover, large size 
particles generally require longer times than small particles to transfer volatile 
compounds between the particulate and gaseous phases (Meng and Seinfeld, 1996). 

Condensed forms of metallic and non-metallic elements and compounds, aque- 
ous solution droplets, solid ash and ice particles, and mixed acid/ash particles 
contribute to the aerosol and particulate budgets of volcanic clouds, and together 
with volcanic (and air pollution) gaseous species interact to produce complex dis- 
persion characteristics of explosive eruptions. Micron and submicron size particles 
can be particularly dangerous to human lungs, especially when combined with acids 
and other organic and inorganic species (Murphy, 2005). 
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7. 2.2. Plume turbulence 

The characteristics of a volcanic plume are determined by the thrusting effect of 
the material being discharged from the volcanic vent and by the buoyancy of the 
warm, wet plume ascending into an atmosphere that is drier and subjected to local 
weather conditions. As a result, the plume is highly heterogenous in terms of ther- 
modynamics and microphysics, and this is reflected in the coupling of turbulence 
processes at different scales. 

The entrainment-mixing processes reduce the plume buoyancy and contribute 
to the vertical and lateral redistributions of heat, water vapor, and particulate 
matter. Turbulence is produced from large-scale mean flow instabilities and dis- 
sipated at centimeter scales and below where it interacts with particles because of 
their inertia and causes particulate number or loading ratio fluctuations that affect 
aggregation, fragmentation, and condensation/evaporation processes. 

Let us represent by u and v typical velocities associated with the largest and 
smallest eddies, respectively, and by ( and rt the length scales of the largest (integral 
scale) and smallest eddy structures. From experiments, it is known that the eddies 
break up on a timescale associated with their turn-over time, and so, on the average, 
the energy produced by the largest eddies (u3/t ') is dissipated by the smallest ones 
because of their high velocity gradients (e ~ v(v/q):). We thus have 

e ~ 7 "~ v (7.1) 

where v is the kinematic viscosity of the fluid and e is the energy dissipation rate. 
The large-scale mean flow is driven by inertia and buoyancy forces, and this flow 

continuously cascades energy down to the smallest eddies. This cascade is halted 
when the Reynolds number, based on small eddy size, is of order unity, that is 
Vrl/V ~ 1. Combining these expressions and defining 

ut ~ 
Ret = - -  (7.2) /' 

as the large-scale eddy turbulent Reynolds number, we obtain the following ex- 
pressions for Ret and Kolmogorov microscales q and v 

U4 (~)1/4 
R e t ~ - - ,  q ~  , v~ (ve )  1/4 (7.3) ~V 

For typical volcanic plumes, u-~ 10 ms-1, /~-~ 102 m, v = 10 -5 m2s - ,l and thus 
e~lO-2m2s -3, r/~l mm, v~l  cm s --~, and Ret --- 108. This means that both atmos- 
pheric clouds and volcanic plumes have very large Reynolds numbers, which implies 
that much of the total turbulence-produced Reynolds stress lies in the small scales 
(Ferziger, 1993) where the energy is dissipated and coupled with local microphysical 
processes. The small-scale turbulence is thus inherently linked to the large-scale tur- 
bulent characteristics of the plume and this coupling produces anisotropy at small 
scales and fluctuations of passive scalars advected by this turbulence (Sreenivasan and 
Antonia, 1997; Warshaft, 2000). This intermittency, or probability of large-amplitude 
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fluctuations, appears to be associated with the vortex stretching, which 'teases out the 
vorticity into finer and finer filaments' (Davidson, 2004, p. 378). Local plume tem- 
perature, humidity, particulate concentration, and other flow properties can thus 
fluctuate with significant amplitudes, and there is a growing consensus that both the 
collision rate and the collision efficiency of particles increase with turbulence-particle 
interactions at centimeter scales and below, including clustering of particles in regions 
of low vorticity or high strain rate owing to their finite inertia (Shaw, 2003). The 
microphysical processes in volcanic plumes thus depend on the properties of the 
turbulent flow in which the droplets and other particles reside; these processes, in 
turn, modify both the turbulent energy dissipation at small scales and the turbulence 
generation by inertia and buoyancy at integral scales. For particle volumetric frac- 
tions less than about 10 -6, the particles have a negligible effect on gas turbulence, but, 
at larger fractions, they begin to modulate the gas turbulence, so that large particles 
lead to turbulent energy production and small particles to turbulent energy dissipa- 
tion. When the particle volumetric fraction exceeds about 10 -3 , particle-particle col- 
lisions take place and a two-way coupling between the gas and particle turbulence is 
expected (Crowe, 1982). 

The turbulent flow of particulates in a volcanic plume is governed by several 
forces which define the non-dissipative and dissipative characteristic response times 
of different processes. The convective time is defined by equating the non-steady 
inertia and convective inertia forces, the settling time by equating the non-steady 
inertia and buoyancy forces, the thrustin9 time by equating the convective inertia 
and pressure forces, and the surface tension t#ne by equating the non-steady inertia 
and surface tension forces. We also have the characteristic times associated with 
particle rotation, collision, and dilatancy. In addition, we have the dissipative times 
associated with momentum, heat, and mass diffusion. These times have different 
values in different regions of the plume (near the vent, in the jet thrust region, in the 
convective region where buoyancy is important, in pyroclastic flows close to the 
ground) and thus no simple model or scaling of pyroclastic dispersions can be used 
for our modeling objectives. 

Particles with very small Stokes number (ratio of non-steady inertia to mo- 
mentum diffusion times) readily respond to turbulent fluctuations, while those with 
very high Stokes numbers tend to move quite independently of the surrounding 
fluid. In the intermediate range of Stokes numbers, the particles tend to produce 
inertial clustering, or move out of the regions of high vorticity and congregate into 
regions of high strain (Dobran and Hur, 1990; Eaton and Fessler, 1994; Reade and 
Collins, 2000; Wang et al., 2000). 

Since the small eddies of volcanic plumes have millimeter-size structures, the 
prospects for direct numerical simulation (DNS) of such structures are not forese- 
able in the near future, because such simulations should also resolve large eddies for 
tens and hundreds of kilometers around the volcanic vent. Despite of the present 
unwieldiness of DNS, we cannot ignore the smallest eddies in the flow because they 
dissipate the energy being produced by the large eddies and thus affect these struc- 
tures. This implies that we must reliably model the effects of the small-scale flow 
without requiring the resolution of every detail of the tiniest eddy structures. 
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In Reynolds-averaged models, only the mean flow is computed and the turbulence 
closure is provided through eddy diffusivity or one or more transport equations that 
account for the generation and dissipation of turbulence. In large eddy simulation 
(LES) models, the smallest scales are averaged out while the large scales are com- 
puted directly. This essentially assumes that small eddies in a flow are more isotropic 
than large ones and that they can be universally modeled through some suitable scale 
invariance algebraic models (Smagorinsky, 1993; Meneveau and Katz, 2000; Wagner 
and Liu, 2000). The discretization for LES is, in general, much finer and more 
accurate and physically correct than that involved in Reynolds-averaged models. 

Multiphase flow models based on ensemble or time averaging are too com- 
plicated and poorly constrained by the large number of modeling parameters 
(Elghobashi and Abou-Arab, 1983; Ahmadi and Ma, 1990), and have limited 
practical utility for more than two phases. The eddy viscosity gas phase turbulence 
models of Valentine and Wohletz (1989) and Dobran et al. (1993) (and subsequent 
variants of this model as in Dartevelle, 2004; Ongaro et al., 2004) suffer from the 
major flaw of not accounting properly for interphase turbulence coupling, and 
convection and diffusion of turbulence. The turbulent fluctuations at a point de- 
pend in part on the global structure of the flow, and on how these fluctuations are 
dissipated at small scales affects their generation at large scales. As noted above, 
there is a strong coupling between turbulence and particulates of different sizes, and 
any volcanic plume model that does a poor job of accounting for such a coupling 
should not be employed for predictive simulations of volcanic eruptions. Due to 
their physical and numerical modeling deficiencies, the current pyroclastic disper- 
sion models are unsuitable for use in a Global Volcanic Simulator. 

7.2.3. Particulate distributions 

Walker (1981) classified explosive volcanic eruptions according to their dispersal 
and fragmentation indices. The dispersal index (D) measures the area over which the 
pyroclastic deposit is dispersed and is correlated in terms of the eruption column 
height, whereas the fragmentation index (F) measures the degree of fragmentation 
of the pyroclastic material and is correlated in terms of the rheology of the erupted 
material. High F's produce highly fragmented magmas and copious amounts of 
small particulates with grain sizes corresponding to fine ash (less than 63 lam or 4)4, 
~b = - log  2 dorain, with dorai n being in mm). Plinian eruptions produce 30 km high or 
even higher eruption columns where as much as 25% of the material emitted is fine 
ash and dust and 50% is of sub-millimeter size. Ultraplinian eruptions (such as 
Taupo, ca. 186, New Zealand) produce over 80% of particulates of sub-millimeter 
range and the eruption cloud rises high into the stratosphere (20-50 km above the 
surface of the Earth). Ignimbrite-forming eruptions produce pyroclastic flows and 
normally follow the initial plinian phase. Fine ash content of ignimbrites varies 
significantly, from 15% to 85%, and many ignimbrites appear to consist of sub- 
millimeter particles (Giordano and Dobran, 1994). 

Both post-eruption fragmentation and co-ignimbritic ash settling mechanisms 
operate in producing such deposits. Phreatoplinian eruptions can also produce 
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30--40% of fine ash, and as much as 1-4% of ash that is finer than 4 jam. These ash 
clouds are especially prone to scavenging by water, and raining often takes place. 
Wet particulates tend to stick together and produce millimeter-size particles which 
together with rain droplets and coarse blocks (particles greater than 64mm) fall 
early from the eruption column along ballistic or near-ballistic trajectories. The 
amounts of very fine particulates emitted from volcanoes are currently poorly con- 
strained, because of the practical lower limit of dry sieving (which is about 4 jam or 
q~8) and lack of suitable instruments to resolve particles with different physical and 
chemical properties (NCAR, 2000). 

The particulates in volcanic deposits tend to follow the log-normal distribution 
(Walker, 1981), with large explosive eruptions producing larger sizes than the 
waning stages of phreatomagmatic activity (Hobbs et al., 1982). The very fine 
atmospheric aerosols and particulates associated with nuclei (0.005-0.01 jam) and 
accumulation (0.1-2.5 jam) modes also appear to follow this distribution (Seinfeld 
and Pandis, 1998). 

The nuclei mode aerosols form from the condensation of vapors and nucleation of 
atmospheric and volcanic species. They are lost primarily by coagulation with larger 
particles. The accumulation mode particles form from the aggregation of particles in 
the nuclei mode and condensation of vapors onto existing particles. These particles 
grow into cloud condensation nuclei and wash out from eruption clouds. Particles of 
diameters greater than 2.5 jam have sufficiently large sedimentation velocities and 
their temporal and spatial distributions in a volcanic plume depend on the heat, mass, 
and momentum characteristics of the gaseous environment. 

The particulate distribution spectrum of a volcanic plume can be modeled by a 
multimodal particle distribution function which has the general shape illustrated in 
Fig. 7.2, with its detailed spectrum changing temporarily and spatially, depending 
on the microphysical processes in the plume and the changing character of the 
volcanic material emitted from the volcano. Gas-particulate interactions in the 
plume produce, at least, a dozen different processes which include particulate frag- 
mentation and agglomeration, evaporation and condensation, and chemical reac- 
tions (Fig. 7.1). These processes depend, in turn, on the conditions of pyroclasts 
exiting from the vent and on the dynamic and thermal conditions of the atmosphere 
into which the volcanic products are being discharged. The conditions of pyroclasts 
at the vent depend, in turn, on the characteristics of the ascending magma and on 
the vent geometry, which change due to the conduit erosion processes. A useful 
pyroclastic dispersion model should, therefore, include or be coupled with other 
models that account for such processes. 

As a first approximation, the particle distribution function in Fig. 7.2 can be 
patched by several log-normal or other suitable distributions, but such an approach 
is not very useful for our purposes. What needs to be done is to determine dy- 
namically the temporal and spatial variation of particulate size as a result of con- 
densation, evaporation, aggregation, fragmentation, and mass transfer processes, 
and thus ascertain the dispersion and fall-out characteristics of pyroclastic material 
during an eruption. If a particle is chosen at random from a volume containing 
many particles, p(r) is the probability of choosing such a particle with the radius 
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Fig. 7.2. Particulate distributions in nuclei mode, accumulation mode, and coarse particle mode. The 
coarse particle mode includes coarse ash, raindrops, lapilli, and blocks. The ultraplinian and phreato- 
magmatic eruptions shift the coarse particle distribution toward finer particles. Aerosols aggregate to 
form cloud condensation nuclei and together with fine ash can fall from the eruption column in the form 
of dry and/or wet particulate matter. 

between r and r+ dr. We thus have f o P ( r ) d r  = 1, with f ( r ) =  np(r) being the 
number of particles of radius r per unit volume and n the number of particles of all 
sizes in this volume, f h a s  both spatial and temporal dependence, and can assume a 
complicated form if we include the thermodynamic phase and chemical composi- 
tion of particles into its description. If, in a first approximation, we ignore these 
complications and extend the dynamic equation for particle size distribution of 
Gelbard and Seinfeld (1979) to the situation where f depends explicitly on time, 
particle size, and position within the plume, we obtain 

Of(r, x, t) Off(r, x, t) OVpjf (r, x, t) 
+ + = J + S - R  

Ot Or &,cj 

,/or( +-~ 1 - r3 j ~c((r3-r'3)l/3, r ' ,x) f ( (r  3 - r'3)l/3, x , t )  

/o x f (r ' ,  x, t) dr' + K(r, F, x)(1 + q)f(r, x, 0f(F, • t) dr' (7.4) 

where we have included the effect of particle correlations in the collision integral. 
In this Boltzmann-like transport equation, the first term on the left of the 

equation accounts for the increase in the number of particles and the second term 
for the growth from condensation and evaporation (tOf/Ot) and change in the 
distribution o f f  from these processes (fO~/Ot). The third term accounts for the 
change in f at different spatial locations. The fifth term on the right of the equation 
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accounts for collisions and the fourth term for coalescence or aggregation of par- 
ticles. J is the nucleation rate, S is the source rate, and R is the sink rate of particles. 
~c is the collision kernel and r/ is the pair correlation function. In atmospheric 
clouds, the particle growth is normally dominated by condensation in the earliest 
stages of cloud development when the droplets are small, and, as the droplets grow, 
this process is dominated by particle collisions and coalescence. Some collision and 
coalescence kernels are available in Pruppacher and Klett (1997) and Seinfeld and 
Pandis (1998), but these need to be modified for applications to volcanic plumes. 
Equation (7.4) must be coupled with mass, momentum, and energy transport 
equations to determine the evolution of particle distribution in space and time. 

The particulate distribution in Fig. 7.2 can be divided into m + n disperse phases, 
where all particles smaller than a certain size belong to the set m and the others 
belong to the set n. This division can be decided on the basis of the parameter o~, 
which is defined as follows 

(1-~-)dc~<dc~<d~(l+.N),  c -  l , . . . , m + n  (7.5) 

By this rule, the number of particle cluster groups c is dynamic, because no particle 
belonging to cluster c is allowed to exceed or fall below the mean particle size dc of 
that cluster of particles by the fraction J .  This parameter is optimized through 
verification and validation procedures. The atmospheric and volcanic gases and 
vapors can be included into one phase consisting of several components, such as N2, 
02, H20 vapor, CO2, CO, SO2, and HCI. Water in liquid (droplets) and solid (ice) 
states can include the dissolved inorganic and organic compounds (Pilinis and 
Seinfeld, 1988; Domin6 and Thibert, 1996) and belongs to the disperse phases. 
Coarse particles of raindrops, pumices, lapilli, and lithic blocks in the particulate 
spectrum of Fig. 7.2 belong to the set n. 

An arbitrary macroscopic region of the atmosphere into which volcanic prod- 
ucts are being emitted can thus be modeled with m + n + 1 phases, where each phase 
may consist of one or more chemical components undergoing chemical reactions. 
The number of phases in such a region changes because of particulate nucleation, 
fragmentation and aggregation, evaporation and condensation of volatiles, and 
chemical reactions among the phase constituents. 

For m clusters of fine particulates and gas phase, we can employ the Eulerian 
formulation framework of physical laws, whereas for the n coarse particulate clus- 
ters we can use the Lagrangian framework. This choice is particularly effective in 
our situation because of both the very large number of fine particulates which tend 
to follow the turbulent dispersion of the gas phase and the significant number of 
coarse particles which poorly interact with the gas medium and fine particulates and 
tend to follow near-ballistic trajectories. 

7.2.4. Eulerian form of material transport laws 

The physical laws governing the transport of mass, momentum, and energy of 
m+ 1 Eulerian phases can be established through formal averaging procedures 
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involving the well-established single-phase macroscopic transport model of matter 
(Ishii, 1975; Dobran, 1991; Drew and Passman, 1999). The averaging procedure 
acts like a filter that eliminates detailed tracking of particles while allowing for their 
gross motions and interactions. From among these averaging procedures, the vol- 
ume averaging is most useful, for it not only furnishes the desired mass, momentum, 
energy, and entropy transport laws for each phase of a multiphase mixture, but it 
also provides an additional set of transport equations which account for the struc- 
tural properties of the mixture (Dobran, 1991, 1992). These averaged transport 
equations account for the size of the averaging region and thus recover some of the 
lost information involved in the averaging process. 

A structural model of multiphase mixtures eliminates the complications asso- 
ciated with turbulence modeling based on the Reynolds-averaging procedures of 
single-phase flows and parallels that of LES where only the local turbulence scales 
are averaged while the large scales are computed. 

Structural properties of multiphase mixture include particle inertia, rotation, 
and dilatancy (expansion-contraction effects), and can be directly associated with 
turbulence production and dissipation. The structural effects of multiphase mix- 
tures are intimately tied with the microphysical processes at the centimeter and 
smaller scales where the turbulent energy is dissipated and thus contribute to the 
global plume dynamics where this energy is produced. 

All current pyroclastic dispersion models do not account for a systematic 
coupling between different turbulence scales and, therefore, fail short in their pre- 
dictive capabilities for modeling long-duration and high-rising volcanic plumes. As 
discussed above, turbulence is ubiquitous in volcanic plumes and no serious atten- 
tion has been paid to date to the effects of large turbulence Reynolds numbers on 
energy dissipation, coupling between small and large scales of turbulence, effects of 
Stokes number or particle size, particle loading, volume fraction, particle settling 
parameter, and other ratios of viscous, inertia, and buoyancy forces. 

In the structured model of multiphase mixtures developed by Dobran (1991, 
2001), a macroscopic averaging volume U contains all phases of the mixture and 
the local thermodynamic properties F ~ of phase 0~ appear as volume-averaged var- 
iables 

1 j~: F, dU (7.6) (F~> =-U--~ 

where U~ is the volume of phase 0~ in U. 
The density-weighted average F~, partial average P~, and phase average F~ are 

defined as 

F~ = (P~F~) = 1 U~ <p~F~} (7.7) 

U~ ~- 
P~ = ~ (F~), F~ = (F "> (7.8) 
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The partial density of phase ~ denotes the mass of phase ~ per unit volume of the 
mixture and is defined by 

U~ 
~5~ - y (p~) = ~b~p~ (7.9) 

where ~b~ is the volume fraction (U~/U) and/5~ is the volume-averaged mass density 
of phase ~ in the averaging volume. 

The density of the multiphase mixture is obtained by summing the partial den- 
sities over all the phases 

7 

-- Z ~5~ (7.10) 
zc=l 

whereas the velocity of phase ~, v~, and the mixture velocity, v, are defined as 

1 U~ 1 @, 
v~ = _ <p~v ~) v = - Z.., ~v~ (7.11) 

p~ U ' P ~ = I  

The diffusion velocity of phase ~, u~, is the velocity relative to the center of mass and 
satisfies 

u~ = v~ - v, ~ ~ u ~  = 0 (7.12)  
~=1 

The backward prime affixed to a phase variable denotes the material derivative 
following that phase. 

By employing the above definitions, the averaging procedure produces the fol- 
lowing expression for the balance of mass of phase 

~ + ~ V . v ~  = ~ (7.13) 

where the mass generation rate per unit volume of the mixture ~ arises from the 
phase change processes 

1 ~ m~da (7 14) c~= U ~ 

where a A denotes the interfacial area of phase = in U and m ~ is the local mass 
transfer rate across the interface. ?~ is equal to zero if there is no mass transfer 
across the interfaces. 

The conservation of mass for a multiphase mixture is obtained by summing from 
= 1 to ~ = 7 in Equation (7.13). This produces 

c3t + ~ ' ' ~ v = 0  or ~ + ~ V . v = 0  (7.15) 

where use was made of the mass conservation property of the mixture 

7 

Z k ,  = 0  (7.16) 
:z=l 
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In Equation (7.15) the dot over the mixture density signifies the material derivative 
following the motion of the mixture as a whole. 

The linear momentum of  phase ~ is expressed by 

~,+~ = v .  ~ ,  + ~,b~ + p~ (7.17) 

where ]'~ is the stress tensor and b~ is the body force per unit mass. p~ is the 
momentum source per unit volume and arises from phase changes and structural 
effects of the mixture because of the finite size of the averaging volume U. 

The angular momentum of  phase ~ expresses the non-symmetry of the stress 
tensor 

M~ = T ~ -  ]'~ (7.18) 

where the superscript T denotes transpose. This asymmetry can be produced by 
particle spins, couple stresses, and body moments. 

The conservation of  eneryy of  phase ~ takes the following form 

/5~ = tr(T~. (Vv~)) - V. ~ + ~r~ + k~ (7.19) 

where e~ is the internal energy, tr denotes the trace operation, ~ is the heat flux 
vector, r~ is the energy generation rate per unit mass, and k~ accounts for both the 
energy transfer rate per unit volume between the phases and the structural prop- 
erties of the mixture. 

The entropy inequality of  phase ~ satisfies 

where s~ is the entropy, 0~ is the phase averayed temperature, and ~ is the entropy 
source of  phase ~ that is not necessarily positive semi-definite. 

The phasic conservation of mass, linear momentum, energy, and entropy Equa- 
tions (7.13) (7.17-7.20) are similar to the corresponding equations of single-phase 
multicomponent mixtures and reduce to the latter if the interfacial effects of the 
mixture are negligible. Every physically consistent theory of multiphase mixtures 
should have such a consistency property in order to reproduce, at least, the most 
simple and known physical phenomena. 

The motion of each phase relative to the center of mass is accounted for by 
taking moments of the phasic conservation of mass and momentum equations 
relative to the center of  mass. These operations produce the balance of  equilibrated 
inertia 

/5~i~ = -~( i~ - i'~)+ 2/5~i~-~- V. U~-~ (7.21) 
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and balance o f  equilibrated moments 

~ -  - ~ - - ~ ( i ~ - i ~ ) + S ~ + V . ~ - ~ ) ~ i ~  ~-~- V. v:~ 

9 

(7.22) 

where the isotropic inertia of  phase ~ is defined as 

1 l j l  p~ . 
i~ = r ~ dU (7.23) 

with ~ being the position vector relative to the center of mass. In the equilibrated 
^ 

inertia equation, i~ represents the source of inertia due to phase change, whereas U~ 
accounts for triple correlations of ~ which are associated with the nonuniformities 
within the averaging volume. The moment of surface forces acting on the surface of 
volume U~ in U is represented in the equilibrated moments equation by S~, whereas 
~ in this expression represents the volume-averaged moment of the stress tensor 3"~. 

The above multiphase field equations are the result of replacing continuous 
distribution of forces in the averaging volume by the resultant forces and couples 
acting on this volume. When the forces acting on the surface of U~ are averaged, the 
result is an average force which is represented by the surface traction force T~.n~ 
and a resultant couple represented by S~. Similarly, the average stress tensor 3"~ and 
intrinsic stress moment X~ replace the local variation of stress tensor within U~. 
These results are, therefore, consistent with particle mechanics where the forces 
acting on a collection of particles can be replaced by a resultant force and a re- 
sultant couple. The structural properties of the mixture are thus accounted for by i~., 

- -  _ _ ^ 

U~, S~, and X~, and may also appear in the phasic variables T~, 1~, t]~, i~, ~,~, and ~.  
These variables are required to satisfy certain constitutive principles and the second 
law of thermodynamics as represented by Equation (7.20). 

When some of the results of constitutive theory of mixtures of fluids (Dobran, 
1991) are used in the above transport equations, these expressions, expressed in the 
tensor index notation with indices i, j, and k, reduce to the following forms: 

Conservation of  mass." 

+ - e~, /5~ = 4~P~ (7.24) 
Ct c3a) 
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Conservation o f  momentum." 

O?~v~i O~v~iv~ 1 
- ~ b ~ , i -  ~ P~i~(~~ + (O~q~),i 

-[- c~v~i 4- [2~D~kkaij + 2p~D~ij -+- 2[~C~ck~,idp~j]j 

7-1 7 7 

- Z Z + 
lJ lJ 

(7.26) 

where D~u is the deformation rate tensor and an index following a comma in a 
subscripted variable denotes the partial derivative with respect to that index; for 
example, P=,i - 8p~/Sxi. In Equation (7.26), p~ is the thermodynamic pressure, 2~ 
and/t=~ are the bulk and shear viscosity coefficients, respectively, C= and O== are 
structural property coefficients, {~/~ are viscous drag coefficients, 7~1~ are Soret effect 
coefficients, and A=I~ are density gradient coefficients. The viscosity coefficients 
include both viscous and turbulent contributions and the latter can be modeled on 
the basis of the subgrid scale model of Smagorinsky (1993) or some other more 
refined approaches. The stress term with the parameter C~ accounts for 
Mohr-Coulomb yield-type criteria for plastic deformation when the volume 
fraction gradients become high and the flow begins to creep as in pyroclastic flows 
during material sedimentation. In this situation, the pressure gradient becomes 
balanced by the gravity and compaction characteristics of particulates. This stress 
term thus accounts for the yield stress of the material and is independent of the rate 
of strain. It produces energy dissipation (see Equation (7.28) below). 

Conservation o f  total energy." 
One can derive several useful forms for the energy equation. The one that we will 

need is the total energy equation which is obtained by adding the scalar product of 
velocity and momentum Equation (7.17) to the internal energy Equation (7.19). With 
the total energy being defined as the sum of internal, kinetic, and compaction energies 

1 
e~ = ~ +-~ U~iU~ti + Cgt~)~.i~)gt,i (7.27) 

the result of these operations can be expressed as follows: 

8[9~e~ O[9~e~v~j 
O 

8t c3xj 
= -- q~ti,i -- ~(P~Ugti) , i  "-~ (09tgt~gt(PztU~i),i 

7 - 1  7 - 7 

/7 /7 /7 

( l ) 
+ ~b~v~ + ~r~ - O. + ~ ~ + v~v~ + C~4)~,~4)~,~ 

1 2 - .  (7.28) 
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In this equation qs~ is the interfacial heat transfer rate per unit volume, whereas the 
configuration pressure ~ (Goodman and Cowin, 1972; Passman et al., 1984) is 
computed from the He|mholtz potential 

0qs, 
/~ - P~ 0~b~ (7.29) 

This pressure arises from the changes in the packing of phase ~ and thus reflects the 
strength of contact forces between this and other phases. A reasonable choice for this 
pressure is the packing stress of material grains. 

The total energy Equation (7.28) shows how the energy of each phase is dis- 
tributed between different processes. The convection of energy is balanced by heat 
transfer due to temperature gradients within the phases, temperature differences 
between the phases, phase changes releasing or requiring latent heat, viscous dis- 
sipation which produces heat from fluid friction within each phase and from the 
exchange of momenta between the phases, flow work associated with pressure and 
distribution of phases, energy generation from electromagnetic or other processes, 
and the work expended in distributing phase matter in different regions of vorticity. 
The larger the phase inertia and its volume fraction gradient, the more energy from 
large eddies must be expended or dissipated by the small eddies to maintain equi- 
librium. The strengths of contact forces between the phases and the phasic dila- 
tation rates can both produce and dissipate energy within a mixture. The 
redistribution of particulate and non-particulate matter at small scales is thus gov- 
erned by phase inertia, volume fraction (particle loading), and configuration pres- 
sure parameters. 

Inertia transport equation." 

a~i~ alJ:ci~v~j ^ 

= ~i~ + 2/5~i~,q9~ -(qg~ U~,,,), m (7.30) 
Ot Oxj 

Dilatation-contraction transport equation." 

0t9~(19 ~ Otg~q)~v~j __ ~zcqg:z _ D~kk (p~qg~ + ~ 0 ~ )  
Ot f OXj l---~ 

1 7 
+ -  + (7.31) 

The inertia and dilatation-contraction transport equations account for small- 
scale effects in the flow which have been averaged out through the averaging pro- 
cedure of local mass, momentum, and energy transport laws. In our model, the 
microstructural effects survive through phase inertia, volume fraction, and config- 
uration pressure, and provide a feedback to the mean flow. The phase inertia can be 
viewed as a measure of turbulent intensity and U~,,, as proportional to the gradient 
of this intensity. 

Since the phase inertia moderates both the production of turbulent kinetic en- 
ergy and turbulent dissipation rate, the inertia transport Equation (7.30) can be 
split into two interacting parts that model this turbulence. Such a turbulence model 



332 F. Dobran and J.I. Ramos/Global Volcanic Simulation 

would then be similar to the one of Darwish et al. (2001), although these authors do 
not justify the methods used to obtain their model. The size of the averaging volume 
can be, therefore, interpreted as the filter width, with the microstructural param- 
eters defining its characteristics. The resulting structural model is thus analogous to 
LES models where the small scales are averaged out and modeled and the large ones 
are computed. It is also considerably simpler than the multiphase flow turbulence 
models based on the single-phase flow Reynolds-averaging with too many poorly 
constrained modeling parameters. 

To close the above equations, we also need a constitutive equation for the heat 
flux rate, which in linearized form can be written as 

,,-1 ,' 

- Z Z (7.32) 

where the first term on the right represents the Fourier effect (heat flow due to 
temperature gradients) and the second term is the Dufour effect (heat flow due to 
mass transfer). Except for the temperature gradient term in this equation, all other 
terms can, in general, be neglected. Equation (7.20) places restrictions on the 
phenomenological coefficients of constitutive equations and requires that the fol- 
lowing conditions be satisfied 

2 
~c~>~0; H~>~0; O~<0 ;  ) .~+~/ t~>~0;  

(7.33) ~~>0;  4~/~<0, ~#/~#~' 

The interfacial heat transfer can be modeled as 

gls~ : / ~ ( ~  - 0,/) (7.34) 

where Og is the temperature of the gas phase and h~ is the heat transfer coefficient. 
^ 

The phase change energy flux ~ is related to the mass supply ~ and average 
energy of interfaces of phase ~. Similarly, the source of inertia ~i~ is related to the 
mass supply and average inertia of interfaces of phase :~. Modeling of ~ depends on 
the composition and chemical reactions of the constituents of phase ~, and, in order 
to account for these effects, we must extend the single-component multiphase flow 
theory to one involving many components. This extension is discussed in the fol- 
lowing section. 

7.2.5. Multiphase- multicomponent flows 

While it is possible to assign unique properties to each chemical constituent or 
component in a mixture (Bowen, 1976), we will not follow this approach in order to 
keep the model as simple as possible. In our approximation, we only modify the 
conservation of mass equation of each phase to account for the diffusion of each 



F D o b r a n  a n d  J.I .  R a m o s / G l o b a l  Volcanic  S i m u l a t i o n  333 

constituent and retain the previously-derived phasic conservation equations for 
momentum, energy, inertia, and dilatation-contraction transport. 

If ~Oa~ is the mass fraction of constituent a in phase ~, Equations (7.24) and 
(7.25) need to be replaced by 

O /9 ~ O) a ~ C3 /9 ~ (D a ~ V ~j ^ r J a ~j 
+ = C a ~ - ~ ;  a =  1 , . . . , s  (7.35) 

Ot Oxj Ca~ 

cq p ~ OOa~ c3 ~ ~ oga~ v~j Ca~ p ~ qg ~ l c3Ja~J 
+ = ~ -  ; a =  1 , . . . , s  (7.36) 

Ct ax/ 4~ 4~ Cx/ 

where ~a~ is the net mass generation rate per unit volume and Ja~ is the mass  
di f fusion f l u x  of constituent a in phase ~. ~ accounts for the combined effects of 
nucleation, condensation, evaporation, aggregation, fragmentation, and chemical 
reactions. The constituent mass generation rate is equal to zero if no constituent is 
produced or consumed, while its mass flux can be produced with or without chem- 
ical reactions. Conservation of mass of each chemical constituent then requires 

O~a~ = 1, ~ = 1, . . . ,7;  ~ = ~,  ~ = 0 (7.37) 
a=l a=l ~=1 

The diffusion flux Ja~ accounts for the diffusion of component a relative to the 
mean flow of phase e and, according to the kinetic theory (Hirschfelder et al., 1954), 
it is proportional to the mass fraction gradient 

Ja~ = - K a y .  VOga~ (7.38) 

where Ka~ is the mass  di f fusion tensor that accounts for the effects of turbulence. 
The Eulerian formalism is useful for modeling the continuous gas phase and 

large number of fine particulate phases of the mixture because these strongly in- 
teract with each other through collisions and turbulence. The large particles, on the 
other hand, are affected much less by the gas and small particulate motions and 
tend to follow ballistic trajectories. Their motions are more easily described by 
kinetic equations. 

7.2.6. Coarse -par t i c l e  k inet ic  equations 

Large particles can collide and fragment into smaller particles in a volcanic 
plume. Particles can aggregate into larger particles when they are wet, because of 
the condensation of plume volatiles and scavenging action of fine particulates. 
Large particles fall to the ground in the form of raindrops, pumices, accretionary 
lapilli, and blocks. Aggregation is particularly effective in phreatomagmatic erup- 
tions because of the large releases of water vapor into the atmosphere. The deposits 
of Phlegraean Fields and Vesuvius supply ample evidence of the fallout of such 
particulate matter during the eruptions of these volcanoes (Cioni et al., 1992; Rosi, 
1992). As discussed above, coarse particles can be grouped into clusters according 
to Equation (7.5), with mc being the particle cluster mass, vc the particle cluster 
velocity, and hc the particle cluster enthalpy. Each cluster c consists of N,. particles 
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and this number changes temporarily and spatially. The conservation of mass, 
momentum, and energy for each cluster can then be written as follows: 

Conservation of  mass." 

dmc 
=&r c =  1 , . . . , n  (7.39) 

dt 

where 6~c is the mass generation rate for cluster c, and it includes mass change from 
volatilization, evaporation and condensation, chemical reactions, fragmentation, 
and aggregation. 

Conservation of  momentum." 

dmcv______s = Fc + mcg + (OcVc (7.40) 
dt 

In this equation, Fc is the resultant surface force and g the resultant body force per 
unit mass acting on the particles of cluster c. The resultant force is produced from 
the stress Zc acting on the particles of c 

Fc = f ~c . n dA (7.41) 
d A  

where Ac is the surface area of particles belonging to c and n is the unit normal 
vector to A. 

Conservation of  angular momentum." 

d(Ic. r fA dt = rc • (Zc" n)dA + N~ (7.42) 

where Ic is the inertia tensor and ~Oc the angular velocity of cluster c. rc is the 
position vector from the center of rotation to the center of mass of the cluster, and 
Nc is the resultant moment acting on c. 

Conservation of  eneryy." 

dm~H~ = Qc + mcr~ + (ocH~ + Fct. Vc (7.43) 
dt 

where Hc is the total enthalpy which consists of cluster (specific) enthalpy h~, cluster 
kinetic energy �89 v~, and cluster potential energy 9z, where z is the height above the 
surface of the volcano. Qc is the rate of heat transfer to the cluster, rc is the cluster 
heat generation rate, and Fct is the resultant tangential force acting on cluster 
particles. 

Equations (7.39)-(7.43) must be solved together with the equations of Sections 
7.2.4 and 7.2.5 and an appropriate set of constitutive equations which account for 
specific materials exchanging mass, momentum, and energy in the mixture. 

7.2. 7. Additional modeling considerations 

The material transport model described above is sufficiently general to be able to 
model a wide variety of processes in volcanic eruption columns. These include 
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particle-particle and particle-gas interactions, phase changes, and chemical reac- 
tions between the constituents of the mixture. 

The mass transport Equations (7.35)-(7.39) include phase changes and chemical 
reactions, the momentum Equations (7.26) and (7.40) allow for the exchange of 
forces between the constituents of multiphase mixture, and the energy transport 
Equations (7.28) and (7.43) allow for the exchange of heat and work between the 
phases and chemical constituents of the mixture. The inertia and dilatancy trans- 
port Equations (7.30) and (7.31) include the effects of averaging over small scales of 
the flow and thus provide a feedback between the small and large scales of the flow. 
The coarse-particle angular momentum Equation (7.42) accounts for the effects of 
spins of large particles. The distribution of different size particles in the plume as 
given by Equation (7.4) is more restrictive than the mass conservation Equations 
(7.35) and (7.36), because the mass generation rate Ca~ in these expressions can 
include more general constitutive relations than those on the right side of Equation 
(7.4). 

The Eulerian transport equations can be written in the following general 
form 

Ot 
+ V .  v~tI)~ + V .  J~ = S~, = 1 , . . . ,m  + 1 (7.44) 

where ~ is a vector of dependent variables, J~ are the fluxes, and S~ are the source 
terms of Eulerian phases. The coarse-particle kinetic equations can be expressed as 
follows 

d ~ e  

d t  
= S c ,  c - -  1, . . . , n (7.45) 

where ~c and S c  are the coarse-particle dependent variables and sources, respec- 
tively. The conservation law form of Equation (7.44) is suitable for numerical 
solution as further discussed in Section 7.3. 

In order to investigate the mathematical structure of Equation (7.44), it is con- 
venient to rewrite it in the form of primitive variables 

Ot 
+ A. V ~  -- S~ (7.46) 

where the matrix A and source terms S, do not contain any derivatives of de- 
pendent variables. The system given by Equation (7.44) is hyperbolic whenever all 
eigenvalues of the matrix A are real and distinct, and this implies that the eigen- 
vectors corresponding to the eigenvalues of A are linearly independent. When some 
of the eigenvalues are complex, however, the problem becomes ill-posed and 
renders any numerical finite difference method prone to numerical instability. This 
may occur, for example, when some void fractions become equal to zero. Dobran 
et al. (1993) avoided this difficulty by switching to single-phase flow calculations 
whenever the void fractions fell below 10 -15 
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7.3. N U M E R I C S  

As indicated in previous sections, volcanic eruptions are characterized by a wide 
spectrum of both time and length scales. This together with the length scales that 
are to be solved in order that a Global Volcanic Simulator be a faithful prediction 
tool require that a great deal of attention be paid to the discretization of the 
governing equations. Previous numerical techniques used in the studies of volcanic 
plumes have, in most cases, dealt with two-dimensional flows and conventional 
upwind discretizations of the advection terms in the momentum and energy equa- 
tions (Valentine and Wohletz, 1989; Dobran et al., 1993, and subsequent works 
using the same computer code). Higher-order upwinding schemes use flux-limiters 
techniques (Sweby, 1984; Leonard and Mokhtari, 1990) in order to avoid numerical 
instabilities. Some of these techniques also use an immersed boundary method to 
describe the volcano topography. This technique is based on the introduction of 
source terms into the continuity, linear momentum, and energy equations that 
mimic the presence of an immersed, no-slip boundary (Kim et al., 2001). 

While first-order accurate upwind discretizations enhance the diagonal domi- 
nance of the coefficient matrices and avoid unphysical oscillations at mesh Reyn- 
olds numbers larger than 2, they produce a large amount of artificial viscosity that, 
in addition to being larger than the physical one, produces smearing. This effect is 
particularly important in the case of volcanic eruptions where shock waves may be 
present and the typical dimensions may be on the order of 50km in height and 
100km in diameter. If, for such conditions and in the absence of crosswind, we 
assume a kinematic viscosity identical to that of the air at standard pressure and 
temperature, that is v--  1.5m 2 s -1, and a characteristic velocity on the order of 
50 m s -1, and a 100 • 100 • 100 grid, so that the mesh size is on the order of 1 km, 
the mesh Reynolds number is much larger than 2 and an upwind discretization of 
the advection terms introduces an artificial (kinematic) viscosity on the order of 
104m 2 s -1. This viscosity is much larger than the kinematic viscosity of air and 
produces a much more viscous flow than the one that we are trying to resolve. A 
similar comment applies to meteorological predictions based on first-order upwind 
discretizations of the advection terms in coarse grids. Note that our estimates are 
based on laminar flows and that these are overestimates, since volcanic eruptions 
involve turbulence which produces turbulent viscosities that are usually much larger 
than laminar ones, except near the ground. 

Although the amount of artificial viscosity can be somewhat reduced by higher- 
order upwind discretizations of the advection terms, the resulting finite difference 
equations are less stable and robust, require more grid points, and, therefore, pose 
more difficulties in the imposition of boundary conditions than first-order upwind 
differences (Morton, 1966). In spite of being claimed that the use of locally one- 
dimensional methods based on the solution of linear advection-diffusion equations 
can yield less artificial diffusion than first-order upwind techniques, these claims are 
incorrect, for it can be easily shown that, at large mesh Reynolds numbers, these 
techniques become first-order accurate upwind methods. 



F Dobran and J.I. Ramos/Global Volcanic S#nulation 337 

In addition to the issue raised above, attention should also be paid to the 
'irregularity' of the topography of the surroundings of a volcano as well as to the 
effects of crosswinds that deflect the pyroclastic plume (Oberhuber et al., 1998; Graf 
et al., 1999) and affect both its dynamics and thermodynamics in a different manner 
in the windward side than in the leeward one. The fact that the topography is 
irregular not only affects the flow near the ground, but also the discretization of the 
governing equations in a major manner and opens an interesting issue related to the 
employment of structured or unstructured grids (Ollivier-Gooch and Van Altena, 
2002). Although unstructured grids are more versatile and can be adapted to ir- 
regular boundaries more easily than structured ones, they have the inconvenience 
that one must keep track of the vertices and sides of control volumes to either make 
the appropriate interpolations or approximate the fluxes at interfaces when either 
finite difference or finite volume methods are employed for the discretization of 
governing equations of Section 7.2. 

An alternative to unstructured grids is the use of local grid generation techniques 
that map an irregular part of the flow domain into a regular one and thus allow for 
the concentration of grid points in the regions of high-flow gradients or boundary 
curvature. Although the smoothness of these grid generation methods can, to a 
large extent, be controlled by means of elliptic grid generator methods, one should 
note, for example, that, sufficiently high above the ground, standard structured 
grids are more convenient. The grid lines at the interfaces between these grids and 
those obtained by local grid generation may, however, not coincide or, if they do 
coincide, may exhibit cusp points. In addition to the above issues, attention should 
also be paid to the conservation characteristics of the discretization of governing 
equations, especially when shock waves are produced near the volcanic vent. 

This section consists of several parts. In Section 7.3.1, a DD method at the physical 
level is presented. Then, in Section 7.3.2, the discretization of the governing Eulerian 
equations by means of a finite volume formulation in each domain is discussed and 
a brief description of the system of (discretized) algebraic equations is presented. 
Section 7.3.3 deals with the discretization of Lagrangian equations. A special attention 
to the verification of the accuracy of the numerical plume dispersion model is 
presented in Section 7.3.4. A description of the parallel computer implementation of 
the finite volume method in unstructured meshes is presented in Section 7.4. 

7.3.1. Domain decomposition at the physical level 

As indicated above, the spatio-temporal dynamics and thermodynamics of vol- 
canic eruptions involve a large spectrum of length and time scales; that is, shock 
wave formation and propagation, air entrainment, coagulation, tephra fallout, etc., 
several phases, and an irregular 'topography'. In addition, the presence of cross- 
wind affects the plume dynamics and thermodynamics. 

Due to the large number of scales that characterize volcanic eruptions, the 
physical domain has been partitioned into several overlapping subdomains as in- 
dicated in Fig. 7.3. The domains can be classified into two main categories: Regular 
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Fig. 7.3. Schematic illustration of a mesh around a volcano including the plume (a) and detail of 
overlapping subdomains/blocks (b). 

and irregular domains. Irregular domains are those that are located near the ground 
and are adapted to the topography of the volcano surroundings. Roughly speaking, 
these domains can be defined as those between an imaginary plane perpendicular to 
the axis of and above the volcanic vent and the ground, and may be characterized by 
large aspect ratios. The regular domains, on the other hand, extend from this im- 
aginary plane to the maximum height which is used as a boundary. This height may 
be located in the strastosphere or above, depending on the intensity of the eruption. 
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When crosswinds are present, the plume is deflected and the computational 
domain has to be extended in the leeward direction in order to follow this deflec- 
tion. This may be accomplished by adding irregular and regular domains in such a 
manner that the plume is always located within the computational domain. In 
addition, some of the domains in the windward side can be eliminated. The addition 
and deletion of domains is performed in such a manner that the conservation of 
mass, momentum, and energy are ensured by using interpolation and global con- 
servation principles. This has the advantage that the whole computational domain 
is being adapted to the crosswind and lateral motion of the plume in a quasi-static 
fashion. This quasi-static domain adaption technique is somewhat analogous to 
mesh refinement techniques where grid points are added/deleted as the solution 
evolves, such as, for example, in the h-version of the finite element method 
(Demkowicz et al., 1985). Such an adaption is based on the lateral deflection of the 
plume from the crosswind velocity, time step used in the simulations, and a safety 
factor in order to ascertain that the plume is always located within the compu- 
tational domain. Since the grid is enlarged in the leeward side of the plume and may 
be decreased in the windward one, and, since the wind direction may vary with time, 
this adaption technique is a general one and may result in a large number of 
domains in the direction of the wind and a small number of domains in the trans- 
versal direction. 

As indicated above, the addition and deletion of subdomains has to be per- 
formed in such a manner that the global conservation properties are not violated. 
This can be achieved by imposing the appropriate fluxes on the faces of the domains 
that are added and by modifying those near the ones removed. This does not pose 
any problems if the domains added in the leeward side or deleted in the windward 
side are sufficiently far from the plume. 

The reason for using overlapping rather than non-overlapping domains is that at 
the interface of the latter the continuity and smoothness conditions of the flow 
variables have to be imposed, because the interface between two adjacent non- 
overlapping subdomains is a sharp one. Such conditions of continuity and smooth- 
ness do not necessarily ensure conservation of fluxes normal to these interfaces, and 
require the use of Dirichlet-Neumann, Dirichlet-Robin, or Neumann-Robin cycles 
in adjacent subdomains to achieve convergence in an iterative fashion. These it- 
erative cycling techniques have been shown to converge for strictly elliptic problems 
in smooth domains, but their rate of convergence deteriorates drastically if the 
domains are non-smooth, that is if one of the domains exhibits sharp corners 
(Ramos and Soler, 2001). 

7.3.1.1. Multiblock strategy 

The basic idea of this strategy is to break up the domain into several smaller 
blocks (essentially an ultra coarse mesh) and then generate separate meshes in each 
individual block (Eriksson, 1982; Eiseman, 1985). Fig. 7.4 illustrates this idea 
by showing a schematic of a block decomposition for the region near the ground. 
This figure shows that a subdomain is geometrically much simpler than the full 
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Fig. 7.4. Overset mesh combination (a), patched mesh combination (b), and composite mesh combi- 
nation (c). 

configuration and that, therefore, it can be easily meshed either by solving a partial 
differential equation or, alternatively, by using an algebraic method. It is, in fact, 
common practice nowadays to create the mesh in any particular block by an al- 
gebraic method such as transfinite interpolation and then smooth the mesh by some 
iterations of an elliptic solver (Eriksson, 1982; Eiseman, 1985). 

There are several variants of the multiblock technique, depending on whether or 
not continuity of mesh lines is maintained across the block boundaries. Overset 
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methods (Fig. 7.4a) represent one extreme situation where no attempt is made to 
match meshes from neighboring blocks or subdomains (Chesshire and Henshaw, 
1990). The lack of any constraint at the subdomain boundaries means that mesh 
generation for the individual subdomains is much easier. In particular, there is no a 
priori need to create block interfaces and this advantage has facilitated an early 
application of the overset approach to complicated geometries. Another advantage 
of permitting such a loose connection between neighboring meshes is the possibility 
of treating moving body problems. Since the penalty for these advantages lies in the 
need to transfer information between neighboring meshes, this requires a means of 
determining an appropriate overlap region and the development of interpolation 
formulae to ensure accurate data transfer. 

A patched multiblock mesh (Fig. 7.4b) has an a priori defined block structure 
with blocks that conform with their respective block boundaries, but without the 
need to maintain continuity of mesh lines between neighboring blocks. Interpola- 
tion at block boundaries is now less demanding than that required by an overset 
system. This approach has the advantage of allowing a highly refined mesh in 
specific regions without imposing unnecessary refinement elsewhere. A composite 
multiblock mesh (Fig. 7.4c) can be regarded as a special case of the patched ap- 
proach in which the mesh lines are required to be continuous across block inter- 
faces, that is, subdomains (Thompson, 1987). This has the drawback that the mesh 
refinement in one block, involving an increase in the number of mesh points on 
block boundaries, will induce a corresponding refinement in neighboring blocks and 
so on throughout the mesh. It does, however, ensure continuity of the mesh lines. 
Mesh smoothness is further enhanced by requiring slope continuity across block 
interfaces as well. Although a composite multib|ock mesh is more difficult to create 
than an ordinary patched multiblock one, it has significant advantages (usually 
there is no need to interpolate the solution) that arise from the continuity of mesh 
lines. It is, therefore, not surprising that most of the commercial computational 
fluid dynamics (CFD) codes now offer structured mesh generators that exploit a 
composite multiblock approach (Thacker, 1980). 

The requirement to define the position and mesh discretization of the block 
interfaces remains a largely manual task. A good graphics user interface (GUI) can 
ease the burden of creating the block structure, but it can still be a time-consuming 
process. More significantly, the difficulty of automating this process inhibits the use 
of composite block methods for solving time evolving problems, or other situations 
such as automatic design, where the boundary shape is changing. It may then be 
necessary to alter the block interface positions, or even the block arrangement and 
connectivity (block topology), leading to potentially insurmountable difficulties if 
automated blocking is not possible. 

Multiblock and structured mesh generation techniques have improved steadily 
over the last 20 years and have reached a state of relative maturity. Commercial 
software is now available that provides the user with a GUI to create multiblock 
meshes around configurations of essentially arbitrary complexity. In practice, new 
meshes are often required for configurations whose overall shape is not too differ- 
ent from the one analyzed in a previous computer run. Aerodynamic design, for 
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example, may require many runs to develop a new wing or to determine the op- 
timum placement of a nacelle. Slight changes in wing shape or nacelle alignment do 
not affect the block topology which remains unchanged from one run to the next. It 
is, therefore, not surprising that topology libraries containing templates for the 
block decomposition of different aircraft configurations are now used extensively 
throughout the aircraft industry to ease the difficulties associated with the con- 
struction of a multiblock mesh. 

The user is still forced to identify and construct the required bounding interfaces 
for each multiblock subdomain whenever a radically new configuration is con- 
sidered, and thus the lack of an automated blocking capability remains a major 
weakness of all multiblock methods. Despite the development of several user- 
friendly utilities to assist in this task, generating new multiblock decompositions for 
structured meshes remains a time-consuming task involving an excessive amount of 
human interaction. 

7.3.1.2. Cartesian methods 

It is generally accepted in CFD that a boundary conforming mesh is desirable to 
achieve accurate solutions from any numerical solver. If one is willing to sacrifice 
this requirement, the mesh generation becomes a much simpler task. Difficulties 
arise at the boundary where the Cartesian mesh intersects the boundary surface. 
Although finite difference methods can be derived to interpolate the boundary 
conditions onto the nearest mesh points, it is difficult to ensure solution accuracy. If 
extra points are inserted where mesh lines intersect the surface, however, it is then 
possible to create a boundary conforming mesh. In this respect, boundary con- 
forming Cartesian methods are seen to be closely related to Octree-based triangu- 
lation methods (Shephard and Georges, 1991; George and Borouchaki, 1998; Frey 
and George, 1999). In fact, the elements obtained from the Octree and their in- 
tersection with the boundaries are precisely the elements that make up the Cartesian 
mesh (Fig. 7.5). Conversely, any Cartesian mesh can be converted into an Octree 
type triangulation by splitting all elements into tetrahedra (triangles in two dimen- 
sions). 

Most of the elements in a Cartesian mesh will be hexahedra, although the ele- 
ments adjacent to the surface can be expected to assume a variety of polyhedral 
shapes, depending on the way in which an Octree hexahedron intersects any given 
region of the boundary surface. A Cartesian mesh is, therefore, well suited for use 
by a finite volume or finite element method that can accept arbitrarily shaped 
elements. Given the close affinity between Cartesian meshes and Octree-based tri- 
angulations, it is to be expected that they share the same advantages and limi- 
tations. In particular, the problems of correctly finding the intersection between the 
Cartesian/Octree mesh and the boundary surface, identifying the element shapes for 
the intersected Cartesian cells, and adequately refining the mesh near small bound- 
ary features are substantial. Cartesian mesh methods also suffer from the drawback 
that the surface discretization is not known beforehand and it is, therefore, often 
difficult to ensure a good surface mesh quality. On the positive side, the surface 
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Fig. 7.5. An Octree decomposition near the ground (a) and conversion of the Octree decomposition into 
a triangulation (b). 

discretization is a by-product of volume discretization and it is, therefore, possible 
to generate meshes around highly complex geometries without the need for care- 
fully crafted surface meshes. In fact, the surface definition can be obtained directly 
from the CAD description, provided there is a utility to determine the intersection 
of a given line with the surface. Since Cartesian and Octree-based mesh generation 
methods circumvent the need for prior creation of a surface mesh, a significant 
advantage is achieved in the turnaround time from the design prototype to the flow 
solution. 

7.3.1.3. Mesh near the ground 

As stated above, volcanic eruption plumes are turbulent and turbulence is one of 
the unsolved problems of physics which is characterized by a very broad spectrum 
of time and length scales. This disparity in length scales produces a difficulty for 
appropriately resolving turbulence except for flows in simple geometries at low 
Reynolds numbers. This implies that turbulence modeling of volcanic plumes is 
necessary (Section 7.2) in order to account for small scales, and that this modeling 
will have a major impact on mesh generation, especially near the ground where 
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there is a need to create highly stretched mesh elements inside boundary and shear 
layer regions. 

There is a reasonable body of experience with structured meshes that justifies 
their use for Navier-Stokes computations. For unstructured meshes, there is less 
evidence to draw on and there is a general suspicion that highly stretched tetrahedra 
are not suitable mesh elements for the computation of viscous layers in high Reyn- 
olds number flows. 

The generation of anisotropic, or highly stretched, elements poses a number of 
difficulties in the mesh generation process. In particular, it is necessary to maintain 
careful control over point placement and mesh connectivity to ensure adequate 
mesh quality; that is, the element interior angles should not be much larger than 90 
degrees, high aspect ratio elements should be aligned with the boundary surface, 
etc. These problems have been addressed in various ways by means of: 
1. Tetrahedral mesh-mapping techniques that apply an affine transformation to a 

triangulation so as to create an anisotropic layer of elements (Mavriplis, 1990, 
1995; Peraire et al., 1992). 

2. Tetrahedral mesh-advancing layers methods that introduce an advancing lay- 
ers method to create anisotropic meshes wherever boundary layers can be 
expected by, for example, extruding tetrahedra (Pirzadeh, 1996). 

3. Hybrid meshes (Kallinderis et al., 1996). 

It is known that the truncation error of a finite volume discretization depends on 
the shape of the control volume. In particular, a trapezoidal approximation for a 
vertex-based method, though nominally second order, becomes first-order accurate 
unless the control volume possesses central symmetry. For a vertex-based disc- 
retization, the control volume associated with a given point typically corresponds to 
the boundary of the collection of elements incident at that point. For a cell-centered 
discretization, it is the element boundary that functions as the control volume. On a 
structured mesh of hexahedra, one can generally expect central symmetry at all mesh 
points unless there are extreme distortions in the mesh. A planar triangulation will 
have central symmetry if the triangles are all equilateral, resulting in hexagonal 
control volumes for vertex-based schemes. In an anisotropic layer of highly stretched 
triangles, the central symmetry can only be achieved if the mesh maintains a struc- 
tured appearance (that is, advancing layers) and all the diagonal edges are oriented 
in the same direction. In a tetrahedral mesh, however, it appears impossible to 
achieve the central symmetry under any circumstances. If this is the case, it is then 
necessary to maintain this symmetry of control volumes in boundary layer regions. 

If prism-shaped elements are used in the viscous layer, the central symmetry will 
be preserved, provided that there is good triangle quality in the lateral direction 
parallel to the boundary surface. By combining prismatic elements with a tetra- 
hedral mesh, one might expect to achieve solutions of Navier-Stokes equations that 
match the accuracy of computations on structured hexahedral meshes. Since the 
prism layer is unstructured in the lateral direction, there is much more flexibility in 
handling complex geometries and a greater opportunity to achieve a high level of 
automation in the mesh generation process than would be the case with purely 
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hexahedral elements. For these reasons, hybrid meshes of prisms and tetrahedra 
have considerable appeal as the best compromise to achieve accuracy in turbulent 
computations while permitting ease of mesh generation for complex configurations. 

It must be pointed out, however, that there is little hard evidence to support the 
contention that using prisms in the boundary layer region is more accurate than 
using tetrahedra, or that hybrid meshes achieve the same accuracy as composite 
multiblock meshes made up of hexahedra. Structured multiblock methods achieve 
good accuracy, but are time consuming to apply. Tetrahedral meshes with aniso- 
tropic elements in boundary layer regions are easier to create, but their accuracy is 
suspect. Overset methods represent a compromise between ease of use and their 
purported solution accuracy for viscous flows. 

It seems likely that the trade-off between accuracy and ease of use will shift, so 
that, perhaps, one of the meshing methods will stand out as clearly superior in 
meeting the dual requirements of solution accuracy and ease of application. In the 
best of all possible worlds, one might hope that all mesh generation methods would 
one day meet this goal. At the time of writing, it appears that composite multiblock 
meshes of hexahedra offer the best accuracy for turbulence computations, but the 
lack of an algorithm for automated block decomposition renders these meshes time 
consuming to create. At the other extreme, the Cartesian approach offers essentially 
fully automated mesh generation, but the poor quality of mesh elements near 
boundary surfaces severely limits the accuracy of these mesh types, particularly for 
turbulent computations. Overset meshes of hexahedra represent a compromise that 
lies between these two extremes; they are more complicated to set up than tetra- 
hedral meshes and computations on overset meshes are arguably less accurate than 
comparable computations on composite multiblock hexahedral meshes. In fact, our 
recent experience suggests that the accuracy achieved on carefully constructed 
overset meshes may be on a par with the accuracy obtained by computations using 
composite multiblock meshes. 

Accurate and fast simulations of volcanic eruptions depend on the rapid turn- 
around of many computer simulations involving several million mesh points. This 
requirement places a premium on computational efficiency and can often influence 
the choice of mesh type. Most vertex-based methods, for example, exploit an edge- 
based data structure so that the computational efficiency is directly related to the 
number of edges in a mesh. For a given number N of mesh points, the number of 
edges in a hexahedral mesh is approximately 3N, the number of edges in a mesh 
made entirely of prisms is approximately 4N, while a tetrahedral mesh contains 
roughly 7N edges. All other things being equal, prisms should be preferred over 
tetrahedra when running edge-based flow solvers. Likewise, hexahedra should be 
preferred over both prisms and tetrahedra. The construction of hybrid meshes, 
containing large regions meshed by hexahedra wherever this can be easily accom- 
plished, is a common practice for both laminar and turbulent flow computations. 

Whether automated blocking is possible for composite multiblock meshing has 
been an open question for the last 20 years and it is likely to remain so without 
radical new insights. In the absence of a satisfactory answer, it seems reasonable to 
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look for ways that might lead to some degree of automation and thereby reduce the 
amount of human labor that is needed to create composite multiblock meshes 
around highly complicated configurations. One option might lie in exploiting the 
high degree of automation achieved by tetrahedral meshing methods. It is possible 
that this geometric structure could be used to guide the decomposition of the 
flowfield into large hexahedral blocks, leading to a partial resolution of the au- 
tomated blocking problem. 

Alternatively, one may ask whether the accuracy of flow computations run on 
tetrahedral meshes could be improved to match the accuracy attained on compa- 
rable composite multiblock hexahedral meshes. To achieve this goal, it will be 
necessary to reach a deeper understanding of the relation between element type and 
the accuracy of the discretization formulae that are used to approximate the flow 
equations, particularly on highly stretched meshes. This depends, of course, on the 
way in which the flow equations are discretized, since different flow solvers can be 
expected to exhibit varying degrees of sensitivity to different mesh types. As an 
example of the subtle interplay between mesh stretching and the flow solver algo- 
rithms, one notes how the least-squares approach for estimating flow gradients can 
be quite inaccurate in boundary layer regions. This often results in increased ar- 
tificial dissipation in the boundary layer, leading to a less accurate flow solution and 
poorer estimates of flow friction. Much more work needs to be done to understand 
how mesh behavior influences the accuracy of discretization formulae and to what 
extent one can build flow solvers that are reasonably tolerant of mesh imperfections 
and idiosyncracies. 

The success of tetrahedral mesh generation in achieving a high degree of au- 
tomation has also moved attention to the more time-consuming aspects of mesh 
generation, namely surface mesh generation and the CAD interface. From the point 
of view of the user, an ideal black-box mesh generation system would consist of a 
seamless suite of software to clean up imperfections in the CAD description, au- 
tomatically generate a surface mesh to meet a required mesh density, and then 
create a volume mesh. All this would, of course, be done at the push of two or three 
buttons to specify certain parameters, that is the accuracy to which the true surface 
is approximated, the height of the first element off the surface, the total number of 
mesh points, etc. As noted above, the Cartesian/Octree methods circumvent the 
need for surface mesh generation and can, in principle, be linked directly to a CAD 
interface. 

Is it perhaps not too far fetched to imagine that different mesh generation 
methods might one day combine to achieve the goal of black-box mesh gener- 
ation. For example, a Cartesian volume meshing method might be used to obtain 
an initial surface triangulation that could be adaptively improved to produce a 
good quality surface triangulation. A tetrahedral mesh generator could take this 
surface triangulation and reliably create a good quality volume mesh of tetra- 
hedra. If, as suggested above, this tetrahedral mesh could be exploited to achieve 
a semi-automated block decomposition of the flow field, then a compo- 
site multiblock hexahedral mesh could be generated with little need for human 
intervention. 
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7.3.2. Finite volume discretization of  the Eulerian equations 

In each block/subdomain, the Eulerian equations presented in Section 7.2 are 
discretized by means of finite volumes in space. Both collocated and staggered grid 
arrangements can be used (Fig. 7.6). Due to the disparate time and length scales 
involved in volcanic eruption plumes, the governing equations are stiff. Therefore, if 
explicit methods were used to solve the discretized form of the governing equations, 
the time step would be controlled by the fastest decaying process and a large 
number of time steps would be required to perform a volcanic eruption simulation. 
This can be avoided by using an implicit discretization which requires an iterative 
procedure for the solution of the discretized equations in each subdomain and may 
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Fig. 7.6. Schematic of the staggered (a) and (b) and collocated (c) and (d) schemes for structured (a) and 
(c) and unstructured (b) and (d) meshes. 
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pose some communication problems amongst the different processors when par- 
allelism is used to solve these equations. 

The discretization of Eulerian equations is based on cell-centered grids, first- or 
second-order accurate time-linearization with respect to the previous time level, and 
second-order accurate spatial discretizations for the source and diffusion-like terms. 
The time-linearization results in linear partial differential equations in space at each 
time level. 

The advective fluxes are discretized by means of a weighted essentially non- 
oscillatory (WENO) method (Jiang and Shu, 1996; Shu, 1996) that is second-order 
accurate in non-smooth regions and third-order accurate in smooth ones. This 
method is based on a Lagrange interpolation of the cell-centered quantities to 
determine the advective fluxes and includes smoothness indicators. These indicators 
measure the smoothness of a particular interpolation polynomial and are related to 
the LZ-norm of all the derivatives of the interpolation polynomial. Some advantages 
of this technique include its third-order accuracy in smooth regions, second-order 
accuracy in non-smooth regions such as shock waves, use on unequally spaced 
grids, and the elimination of the loss of accuracy associated with total-variation 
diminishing (TVD) and essentially non-oscillatory (ENO) techniques near discon- 
tinuities. In addition and due to the presence of smoothness indicators in WENO 
techniques, these methods can be easily employed for local grid adaptation. For 
example, one may evaluate the largest difference between different smoothness 
indicators in a single cell or control volume, and if this difference exceeds a user's 
specified value or the solution is not very smooth, the grid cells can be added by 
splitting the cell where this occurs into two new ones. In a similar fashion, one can 
merge two cells into one whenever the largest smoothness indicators drop below a 
user's specified lower threshold. The thresholds for cell splitting or merging are 
problem specific and have to be selected in a trial-and-error fashion. Moreover, in 
order to prevent loss of stability and accuracy when cell splitting is performed, the 
cell-centered values in the new grid should be determined in accord with WENO 
principles, that is, by integrating the interpolation polynomials over the new cells. 

Using a time-linearization method for both Eulerian and Lagrangian (Section 
7.3.3) phases, together with the discretization of spatial derivatives in each sub- 
domain and the time-linearization of source terms, produces a linear system of 
algebraic equations of the form 

Ax = b (7.47) 

where A is the coefficient matrix and x and b are the vectors of unknown and known 
quantities, respectively. The matrix A also includes the boundary conditions, which 
for the overlapping domains considered here are of the Dirichlet type and must be 
updated due to the coupling between adjacent subdomains. 

As stated above, the spatial accuracy of the method considered here is second- 
order in non-smooth regions and third-order in smooth ones, whereas the time 
accuracy is either first- or second-order, depending on whether the time discretiza- 
tion is performed by means of a standard implicit or trapezoidal rule. First-order 
temporal accuracy may not be enough (because of large time steps that may have to 
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be used in order to predict the evolution of volcanic eruptions in a reasonable time) 
due to the accumulation of temporal discretization errors, and, especially, when the 
time step is much larger than the largest characteristic time of volcanic processes 
within the plume. In this case, the time-linearization technique which corresponds 
to a single iteration of the Newton-Raphson method can be replaced by a pre- 
dictor-corrector method, where the predictor is the time-linearization method just 
described and the corrector is based on a quasilinearization method where the 
linearization is performed with respect to the previous iteration. Due to the qua- 
silinearization, linear algebraic equations result at each iteration, and iterations 
have to be carried out as many times as required until a user's specified convergence 
criterion is satisfied. This iterative technique is of special interest, especially if ap- 
proximate factorization methods are employed to reduce the computation of three- 
dimensional flow fields in a three-dimensional subdomain to a sequence of solutions 
of either one- or two-dimensional problems, due to the factorization errors intro- 
duced by the approximate factorization. 

7.3.3. Discretization of the Lagrangian equations 

As described in Section 7.2, the clusters of large particles will be treated in a 
Lagrangian fashion by accounting for their mass, linear and angular momenta, and 
energy exchanges among both themselves and those phases belonging to the 
Eulerian group. These mass, momentum, and energy equations are governed by 
nonlinear ordinary differential equations which are solved by a second-order time- 
linearization method, whereby the nonlinear terms are linearized with respect to the 
previous time level. This method results in linear algebraic equations at each time 
level and can be interpreted as the first iteration of an iterative Newton-Raphson 
technique. It has the inconvenience that the linearization is performed with respect 
to the previous time level, which may produce substantial errors (despite of its A- 
stability) if the time step is sufficiently large. This is not only due to the leading- 
order (temporal) truncation errors, but also because the clusters may cross several 
computational cells in a single time step where the flow characteristics are quite 
different from those where the linearization was performed. This disadvantage may, 
however, be reduced by using a predictor-corrector method whereby the predictor 
step is based on the time-linearization technique described above and the corrector 
step uses a weighted source term that depends on the time spent in different cells 
during the time step (Fig. 7.7). This means that, in addition to the three spatial 
coordinates that identify the location of a cluster and its mass, velocity, and energy, 
one must also account for the fraction of time that each cluster spends in a com- 
putational cell per time step as shown schematically in Fig. 7.7. 

The time discretization of Lagrangian phases equations can be written as a 
system of linear algebraic equations 

By = c (7.48) 

which can be either appended to the linear system for the Eulerian phases or treated 
separately from it. Appending the discretized Lagrangian equations to the 
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Fig. 7.7. Schematic illustration of the path of the Lagrangian cluster and the cells that it crosses in a time 
step. The fraction of time spent in each cell is used to determine the source terms of the Lagrangian 
phase. 

discretized Eulerian ones in each subdomain is advisable, provided that the di- 
mensions of the former are smaller than those of the latter and a large number of 
subdomains and grid points are used to solve the Eulerian phases. This is due to the 
fact that the Eulerian equations must be treated iteratively when overlapping DD is 
employed at either the physical level as described above or at the algebraic level as 
described below. On the other hand, if full time-linearization is employed for the 
Eulerian phases and grids on the order of 200 x 200 x 200 grid points are used and 
DD at the physical level is not used, then the algebraic equations for the Lagrangian 
phases may be appended to those of the Eulerian phases, because the DD is only 
performed at the algebraic and hardware levels. Of course, a 200 x 200 • 200 point 
mesh may be unsuitable to accurately predict the evolution of a volcanic plume, 
despite the fact that even coarser grids have been employed in previous multidi- 
mensional simulations of volcanic plumes and magma flow in volcanic conduits 
(Dobran et al., 1993; Ramos, 1999; Esposti Ongaro et al., 2002; Neri et al., 2003; 
Dartevelle, 2004). 

7.3.4. Verification 

CFD has advanced considerably in the last 20 years or so, and the approach 
adopted here represents an attempt to model volcanic plumes based on the mode- 
ling equations of Section 7.2. These equations and the numerical approach pro- 
posed above may undergo changes in the future, due to improvements in physical 
modeling, numerical algorithms, and computer hardware. In fact, as the computer 
hardware continues to improve and offer ever increasing amounts of memory and 
ever faster processors, it is inevitable that the application of improved CFD codes 
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to very large and complex problems such as volcanic eruptions will become a task of 
greater interest. 

However, one should keep in mind that there are several reasons for the short- 
comings of current CFD technology. This includes limitations of the discretization 
formulae, grid generation and coupling, and deficiencies in turbulence models. 
Perhaps the most important and overriding concern is the size of the mesh and the 
dependence of the flow solution on element type. It is, therefore, of paramount 
importance to assess the accuracy of the volcanic eruption simulator proposed here 
and attempt to provide quantitative answers to the question of how the accuracy of 
numerical flow simulations depends on mesh size and on element type. The analysis 
presented below offers a means of assessing these effects without having to make a 
detailed investigation into the discretization scheme or turbulence model. In other 
words, the approach is general enough to permit comparisons across a broad class 
of CFD methods, while being specific enough to provide useful insights. 

Several recent papers have addressed the problem of code verification and the 
assessment of solution error (Oberkampf and Blottner, 1998; Rizzi and Vos, 1998; 
Roache, 1998b). It is generally acknowledged that the need for effective criteria to 
evaluate different CFD codes and quantify the accuracy of numerical computations 
is compelling, but finding suitable criteria remains an elusive goal. 

Roache (Roache, 1994, 1998b) proposed using the Richardson extrapolation 
(Richardson, 1910) to study the effect of mesh refinement and introduced the con- 
cept of a Grid Convergence Index (GCI) based on this approach. He presents 
strong arguments in favor of applying this technique for the assessment of solution 
accuracy as well as code validation. Questions remain, however, on when and where 
Richardson extrapolation may be used. 

As originally formulated and as discussed in texts on numerical analysis 
(Isaacson and Keller, 1966; Cheney and Kincaid, 2004), the Richardson extra- 
polation is presented as a technique to improve the accuracy of a finite difference 
approximation given a set of discrete equi-spaced function values, but it is not 
known whether or not this approach is valid for a finite volume mesh whose elements 
vary widely in size and shape. It is also not known whether or not this approach is 
also valid for different mesh types, such as tetrahedra and prisms as well as hexa- 
hedra, and whether or not it can be applied to meshes that are uniform refinements 
of an initial mesh, such as the one that one might obtain by adding a mesh point at 
the mid-point of all edges and splitting each volume element into eight new elements. 
In addition, it is not known whether or not the outcome of applying this technique 
depends on whether one considers the number of mesh elements or the number of 
mesh points. A framework for answering these questions in a setting that is general 
enough to draw conclusions that are independent of mesh type is as follows. 

Suppose that a set of partial differential equations to be solved on a domain D, is 
represented by a discrete approximation on a mesh that corresponds to a partition 
of D containing N elements whose volumes are given by Vj, j = 1, 2, 3 ..... N. I f f i s  a 
dependent variable, or some quantity derived from the dependent variables, one can 
write the pointwise error of the discrete approximation to f on the jth element as 
Ej{x). The error Ej{x) will, in general, be a function of the position vector 
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x = (x, y, z). The 9lobal error for the approximation to f can then be written as 

1 N N 

E = ~  ~ VjEj(x), V = Z Vj (7.49) 
j--1 j=l 

If the mesh is sufficiently fine so that the local error can be written as 

Ej(x) = Kj(x, hj)h p, Kj(x, hi) = kj + O(hj) (7.50) 

with h 3 -- Vj, hj being the local mesh size, and kj being a constant, for all x within 
some neighborhood that contains the jth element. The local error is then 

Ej ~ k j~  (7.51) 

throughout the flh element, and the global error can be approximated as 

1 N 
E "~ - - ~ Z  "-3+p]fjtlj (7.52) 

j=l 
If the original grid is refined so that the new mesh size is h~ = rhj, it can be easily 
shown that the global error in the new mesh is 

E ' ~  ? E  (7.53) 

If we now define the average mesh size as 

1 
(_~_)-3 

h =  

then 

(7.54) 

from which it can be concluded that the global errors are 

E ' ~ C h  'p, E ~ C h  p (7.56) 

where C is a constant. 
Under these conditions, it is possible to apply Richardson extrapolation to 

eliminate the leading error term and obtain a more accurate estimate of the global 
quantity f. Alternatively, if the solution has been computed on three different 
meshes with three different sizes, one can use Richardson extrapolation to deter- 
mine both the leading error term and the exponent p that represents the order of 
accuracy. The above argument shows that, by using meshes fine enough for the 
computation to be in the asymptotic range, this is a sufficient, but not a necessary 
condition for Richardson extrapolation to be applicable. 

The above simple analysis allows one to investigate the dependence of solution 
error on mesh size and thus provides a useful tool for error assessment and code 
verification. However, one should try to equidistribute the global errors throughout 
the subdomains and to determine how the effective exponent p is affected by mesh 

~ - ~  r e = (7.55) 
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refinement. Error equidistribution can be dealt with by considering a fixed number 
N of subdomains and by minimizing the functional G -- E + 2 V with respect to h 9, 

where 2 is a Lagrange multiplier. For the conditions given above, this minimization 
yields 

3 2 V  
Ej = k j ~  = - ~  = E (7.57) 

p + 3  

The global error E is thus minimized if the pointwise error E/is equi-distributed 
over the mesh. Ej = E requires that the mesh size elements h~ associated with the jth 
element satisfy 

1 

Although not presented here, one can use a generalized Richardson extrapolation 
for determining the exponent p of error reduction, i.e. E = F ( h ) +  Ch p + O(hp+l). 

This procedure involves a nonlinear equation to extract the error exponent p from 
computations o f f  on three different meshes. If the asymptotic range property does 
not hold, it is then possible that the generalized Richardson extrapolation will not 
admit a solution for the exponent p, or that the solution for p will be negative. In 
this case, one must conclude that either the meshes are insufficiently fine to be in the 
asymptotic range or that one or more of the computed approximations to f is 
defective, owing, perhaps, to a lack of convergence of the discretized computation. 

7.4. C O M P U T E R  I M P L E M E N T A T I O N  

As discussed above, the time and space discretization of both the Eulerian and 
Lagrangian equations in each subdomain/block produce systems of linear algebraic 
equations at either each time level if time linearization is employed or at each 
iteration if the equations are solved in an iterative fashion. In either case, the use of 
overlapping domains/blocks does require the use of iterative techniques due to the 
coupling between adjacent domains. Moreover, the resulting system of linear al- 
gebraic equations may not produce a symmetric matrix, and this requires the use of 
a preconditioned Krylov subspace technique (Brown and Saad, 1990; Knoll and 
McHugh, 1995; Shadid, 1999) to obtain its solution. In addition, the length scales 
involved in volcanic plumes have a wide spectrum and, therefore, their accurate 
simulation demands the use of parallelism solution methodologies. 

Although there have been many studies on the parallel implementation of the 
Krylov subspace technique and, especially, of the conjugate gradient method 
(Demmel et al., 1993; Barrett et al., 1994; Basserman, 1997; Dongarra et al., 1998), 
most of them have dealt with preconditioners based on incomplete factorization 
techniques. These techniques are very inefficient in a parallel computer environment 
(Dongarra et al., 1991) if a natural ordering of the matrix is employed. However, 
some works do show that a suitable reordering of the matrices can result in efficient 
parallel implementations of incomplete factorization techniques (Jones and 
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Plassmann, 1993). There have been other studies (Chronopoulos and Gear, 1989; 
Aykanat et al., 1990) which have been focused on the parallel implementation of the 
unpreconditioned conjugate gradient (CG) method. In this work, the most widely 
used Jacobi-like preconditioners have been implemented. 

The parallelization of the Krylov subspace technique method is rather simple, 
since every vector operation of this algorithm can be parallelized separately; that is, 
each processor executes scalar operations on a subset or domain of the components 
of a vector and a block partition of the vectors suffices to obtain good performance. 
For problems derived from the finite discretization of partial differential equations 
on three-dimensional regular/structured grids, the block partition of the system 
matrix by rows and its corresponding aligned vectors are equivalent to a block 
partition of grid points in one of the spatial directions if a natural ordering of grid 
points is employed. In our approach, no partition has been used because of the use 
of unstructured grids. 

7.4.1. Parallel Krylov subspace methods 

In this section, we describe an iterative linear system solution methodology used 
for the parallel unstructured finite volume simulation of the strongly coupled fluid 
flow, heat transfer, and mass transfer that occur in volcanic eruption plumes. The 
nonlinear/linear iterative solution strategies are based on a fully coupled Newton 
solver with preconditioned Krylov subspace methods as the underlying linear it- 
eration. Our discussion considers computational efficiency, robustness, and a 
number of practical implementation issues. The evaluated preconditioners are 
based on additive Schwarz DD methods which are applicable for totally unstruc- 
tured meshes. A number of different aspects of Schwarz schemes are considered, 
including subdomain solves, use of overlap, and the introduction of a coarse grid 
solve (a two-level scheme). As we will show, the proper choice among DD options is 
often critical to the efficiency of the overall solution scheme. 

As noted on several occasions, simulations of volcanic plumes require the so- 
lution of strongly coupled interacting physics in complex three-dimensional geome- 
tries with high-resolution unstructured meshes to capture all relevant length scales. 
After suitable spatial (finite volume) discretization and linearization, these simu- 
lations produce large linear systems of equations with a huge number of unknowns. 
As a result, efficient and robust parallel iterative solution methods are required to 
make such simulations possible. Preconditioned Krylov iterative methods are 
among the most robust and fastest iterative solvers over a wide variety of CFD 
applications. 

In the last decade, there has been a significant amount of work on parallel 
Krylov methods, and a number of general purpose Krylov solver libraries have 
been developed. In general, these Krylov methods are relatively straightforward to 
implement, highly parallel, and are often 'optimal' in some sense. While the con- 
vergence characteristics of specific Krylov methods remains a topic of research 
interest, it is now clear that the key factor influencing the robustness and efficiency 
of these solution methods is preconditioning. 
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Since volcanic eruption clouds are characterized by both locally elliptic and 
nearly hyperbolic behavior, localized steep gradients, and often strongly coupled 
interactions between the gaseous and particulate phases, there is a strong coupling 
between the governing partial differential equations. The nonlinear algebraic equa- 
tions that result from the discretization of these equations may be solved robustly 
and efficiently by means of preconditioned Krylov subspace methods. The precon- 
ditioners considered here fall into the family of Schwarz DD methods. These 
schemes partition the original domain into subdomains and approximately solve the 
discrete problems corresponding to the individual subdomains in parallel. 

Among Schwarz schemes, there are a number of choices which can greatly affect 
the overall solution time and robustness. These choices include the subdomain size, 
the amount of overlap between subdomains, and the partitioning metric which can 
alter the shape and aspect ratios of subdomains. The choices also include the se- 
lection of subdomain solvers, such as an incomplete lower-upper (ILU) factori- 
zation (with further options for dropping nonzeros in the factorizations and 
ordering equations within a subdomain) and the introduction of a coarse grid solve. 
Among these issues, the proper choice among DD options is often critical to the 
efficiency of the overall solution scheme. 

A finite-volume discretization of our partial differential equations gives rise to a 
system of coupled, nonlinear, nonsymmetric algebraic equations, the numerical 
solution of which is very challenging. These equations are linearized using an in- 
exact form of Newton method, with the block matrix representation of these dis- 
crete linearized equations written as 

 759, 

where the block diagonal contribution has been highlighted by a specific ordering. 
In this representation, the vector 4) contains the Newton updates to all the 

dependent variables with the exception of pressures p. The block matrix A corre- 
sponds to the combined discrete convection, diffusion, and source operators for all 
the unknowns. The matrix B corresponds to the discrete divergence operator with 
its transpose the gradient operator. The diagonal matrix R results from the expan- 
sion of density and velocity, and the matrix K corresponds to the discrete 'pressure 
Laplacian' operator. This pressure operator corresponds to the discretization of 
Poisson equation that results from taking the divergence of the momentum equa- 
tions presented in Section 7.2, while the vectors F 4, and Fp contain the right-hand 
side residuals for Newton method. 

The existence of the well-conditioned nonzero matrix K allows the solution of 
the linear systems with a number of algebraic and DD type preconditioners. This is 
in contrast to other formulations, such as Galerkin finite element methods that use 
mixed interpolation and result in a zero block on the total mass continuity diagonal. 
The difficulty of producing robust and efficient preconditioners for the Galerkin 
finite element formulation has motivated the use of many different types of solution 
methodologies. 
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In the approach proposed here, the full coupling of partial differential equations 
in the nonlinear solver preserves the inherently strong coupling of the physics with 
the goal of producing a robust solution methodology. The preservation of this 
strong coupling places, however, a significant burden on the linear solution pro- 
cedure to solve the fully coupled algebraic system, as we will show below. 

The Newton-Krylov method is an implementation of Newton method in which 
a Krylov iterative solution technique is used to approximately solve the linear 
systems that are generated at each step of Newton method. Specifically, to solve the 
nonlinear system F(x)=  0, we seek a zero of F ~ ,~", where x e ,~" is a current 
approximate solution. The Krylov iterative solver is applied to determine an ap- 
proximate solution of the Newton equation J(x)s = - F ( x ) ,  where J(x) is the 
Jacobian matrix of F at x. The Newton-Krylov method is usually implemented as 
an inexact Newton method (Eisenstat and Walker, 1994; Shadid et al., 1997) for 
approximately solving J(x)s = - F ( x ) .  One chooses a forcing term rte[0, 1) and 
then applies Krylov method until an iterate Sk satisfies the inexact Newton con- 
dition 

]IF(x) + J(x)Sk[] <~ql]F(x)ll (7.60) 

One would assume that, in the initial stages of the Newton iteration, when the 
current approximation is far from the true solution, there would be no benefit from 
solving too accurately the Newton equations with the inaccurate Jacobian matrix 
J(xk) that is currently available. Normally, our inexact Newton method formulation 
uses an adaptive convergence criteria to reduce the amount of over-solving that 
occurs and to produce a more computationally efficient nonlinear solution proce- 
dure. To improve robustness, a back-tracking algorithm can be used. This global- 
ization method selects an update vector Sk by scaling a Newton step as needed to 
ensure that the nonlinear residual has been reduced adequately before the step is 
accepted. 

It is worth noting that there are two related issues in the solution of nonlinear 
equations that result from the finite volume discretization of partial differential 
equations. The first is associated with the nonlinear Newton methods and the sec- 
ond with the solution of the linear systems by preconditioned Krylov methods. 

The linear subproblems generated from the inexact Newton method are solved 
by preconditioned Krylov methods which include the restarted generalized minimal 
residual GMRES(k) and transpose-free quasi-minimal residual techniques for non- 
symmetric systems. All Krylov methods rely on a small, but well defined set of basic 
kernel routines that consist of parallel matrix-vector, vector-vector, vector in- 
ner-product, and preconditioning operations. 

It is well known that the overall performance of Krylov methods can be sub- 
stantially improved when one uses preconditioning (Saad and Schultz, 1986; Saad, 
1989, 2003). The basic idea is that instead of solving the system Ax -- b, the system 
A M - l y  = b is solved instead, where M -~ is an approximation to A -~ that is easily 
computed. Since only matrix-vector products are needed, it is not necessary to form 
explicitly AM-l;  that is, only good software is needed to solve My = y. We note 
that the preconditioning described here corresponds to 'right' preconditioning, for 
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it is also possible to precondition on the 'left', that is, M-~A. Here, we only consider 
right preconditioning, because, when left preconditioning is used, the computed 
residual corresponds to a preconditioned residual. If convergence is thus based on 
the size of the residual, changing the preconditioner effectively changes the con- 
vergence criteria. 

The preconditioners that are considered are based on algebraic additive Schwarz 
DD preconditioners with variable overlapping between subdomains, although other 
preconditioners such as Jacobi, block--Jacobi,  and polynomial expansions can also 
be considered. 

A formal description of the variable overlap additive Schwarz preconditioner 
can be described by considering the linear system Ax = b, where A is an n • n 
nonsymmetric matrix, with the matrix entry in the ith row and j th column given by 
aij. This matrix induces a directed graph which can be defined in the following way. 
Each row of A corresponds to a vertex and each ao.r corresponds to an edge 
incident from node i to j. We denote the set of graph vertices by V(A) and similarly 
the set of edges by E(A). Throughout the rest of this discussion, the argument A in 
V(A) and E(A) will be dropped to facilitate the presentation. The set of edges and 
vertices defines a matrix graph G(V, E). 

Domain decomposition methods rely on approximate solutions on subdomains. 
These subdomains are defined in terms of vertex subsets. To discuss vertex subsets 
we use the notation to denote by V~ the kth subdomain in an /-overlap method. 
Assume that Vk i is defined and corresponds to a subset of vertices. The following 
edge set can then be associated with the vertex subset 

Eik = {ei = (x,y) ~ E Ix ~ vik,y ~ V} (7.61) 

where E~ includes all the edges emanating from V~. 
To complete the definition of the Schwarz method, we must now define the 

vertex subsets. Assume that the vertices have been partitioned into p disjoint sets 
V~i, such that V = ~i=, V~/ and V ~ r-7 V~j- 0 for i ~  j. This vertex partitioning 
corresponds to the distribution of the matrix over the processors and effectively 
defines the 0th overlap subdomains. To define the kth overlap subdomains, we use 
the edge sets associated with the (k-1) th  overlap subdomains 

vik -- {x ~ V[33' ~ V, ( x , y )or  0', x) 6 E~ -1 } (7.62) 

To define overlap in an ith overlap additive Schwarz method, we use the vertex sets 
V~. Specifically, consider the restriction matrix I~ of size m • n, where m is the 

Ik(l, 1) = 1 i f j  is number of nodes in V~,, n is the total number of nodes in V, and i 
the /th node in V~ and i Ik(l, 1) -- 0 otherwise, for 1 ~<k~<p. The I~ i operators es- 
sentially map the entire space to the kth subdomain. The ith overlap additive 
Schwarz preconditioner is now given by 

P 

M-1 = Z Iik((Iik)rAIik) -l(lik)T (7.63) 
k = l  
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This method corresponds to projecting the equations onto a series of overlapping 
subdomains defined by the vertex sets and solving each subsystem. Since these 
subdomain solves are independent, they can be performed concurrently. In this 
manner, the overlapping can be viewed as a means to increase robustness by ex- 
panding individual subdomains to include finite volumes or nodes assigned to 
neighboring processors by allowing more coupling between subdomains (or proc- 
essors). In a geometric sense, this overlap corresponds to increasing the size of the 
locally defined subdomain to include additional levels of finite volumes or nodes 
outside of the processors-assigned nodes. Thus, a single level of overlapping uses 
only the information from finite volumes that are connected by an edge in the 
connectivity graph that was cut by the original subdomain partition. Successive 
levels of overlap now use this method recursively by considering the previously 
overlapped points to be assigned nodes to the subdomain. 

This method can be referred to as a one-level scheme. A two-level scheme uses 
not only the fine grid operator defined above, but also adds an additional projection 
of the original equations onto a coarser grid. This two-level DD method is given by 

p 

M-~ Z i i T i - 1  -- Ik ( ( Ik )  A I k )  (I~) T (7.64) 
k=0 

where I6 is an interpolation operator that maps solution vectors from the original 
mesh to an auxiliary coarser mesh that covers the same domain as the original one, 
but with significantly fewer grid points. Theoretically, the number of mesh points 
should be about the same size as the number of subdomains. When A is a symmetric 
positive definite discrete elliptic operator and a sufficient amount of overlap is used, 
the convergence of the iterative method using a DD preconditioner is independent 
of the number of unknowns in the matrix. In cases where a more modest overlap is 
used, the theoretical convergence depends mildly on the size of the subdomains. In 
the case where A is nonsymmetric, much less is known about the convergence of this 
technique for coupled systems of partial differential equations. It is important to 
notice that, with the addition of the coarse grid solve, the DD method is no longer 
completely algebraic. 

While a direct factorization could be used on the subdomains, our experience 
indicates that this is rarely practical as the storage and time associated with this 
direct factorization is too high. Instead of solving the submatrix systems exactly, we 
use an incomplete factorization technique on each subdomain (or processor). Here, 
we employ two specific ILU factorizations: The standard ILU(0) method with no 
fill-in as well as the ILUT (fill-in, drop) incomplete factorization which allows 
specification of a user-specified fill-in parameter (fill-in 1.0) and a drop tolerance. In 
this nomenclature, a fill-in of 1.5 denotes an ILU factor with up to 1.5 times as 
many nonzeros as the original matrix. 

It is important to remark that the partitioning of mesh into subdomains and that 
the subdomain-to-processor assignments are not trivial tasks, for both the parti- 
tions and the subdomain mappings have to be performed in order to achieve low 
communication volume, good load balance, few message start-ups, and only small 
amounts of network congestion. 
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7.4.2. Ordering o f  algebraic equations 

Since the finite volume discretization of a system of ne partial differential equa- 
tions in each subdomain or block results in ne x nx x ny x n- nodal variables and 
algebraic equations, a main issue when solving systems of algebraic equations is the 
ordering of equations and variables. A natural ordering of grid points and blocking 
of nodal variables has been chosen here because of its better cache behavior. 

As indicated above, in order to solve the system Ax = b the Krylov subspace 
method (Saad, 2003) has been used (Barrett et al., 1994), although the BiCGStab 
technique could also be used. The Krylov subspace method is an iterative technique 
which converges to the exact solution in exact arithmetic, through a sequence of n 
vector approximations, where n = ne x nx x ny x n- is the dimension of both x and 
b. From any vector approximation to the solution, a search direction which is con- 
jugate to the previous ones is used to determine a new approximation. In practice, 
only few iterations are employed to obtain a good estimate of the solution. In the 
preconditioned version of the Krylov subspace method, both the condition number 
of A and the number of iterations may be reduced by pre-multiplying the system 
Ax = b by a preconditioner, which is usually the inverse of an approximation to A. It 
should be noted that some authors call preconditioner to the approximation itself. 

Jacobi, block-Jacobi, incomplete Cholesky, and incomplete-block Cholesky 
preconditioners can be tested (Barrett et al., 1994). For block-based precondition- 
ers, however, the N dependent variables per node can be used to form N x N blocks. 
Our experience indicates that the Jacobi preconditioner is the most efficient one for 
three-dimensional reaction-diffusion equations (Ortigosa et al., 2001, 2003). 

7. 4.3. Matr ix -  vector products 

Each iteration of the preconditioned Krylov subspace method contains inner 
and sparse matrix vector products, and, therefore, requires at least three commu- 
nication steps and their corresponding synchronizations. Note that the saxpy 
(~x + y) operations do not require inter-processor communications. A reorganiza- 
tion of computations in the preconditioned Krylov subspace method can be im- 
plemented in order to hide the latency of communications. This overlap of 
communications with computations can be implemented by using asynchronous 
messages in the message-passing interface (MPI) model and prefetch directives on a 
shared-memory (SM) environment. 

The parallelization of the product q = Ap in the preconditioned Krylov sub- 
space method for banded matrices can be performed with a nearly perfect overlap 
between the messages and computations in many cases (Romero and Zapata, 1995; 
Basserman, 1997). The required message with the halo data of p (the data corre- 
sponding to the grid points in the domain of one processor that are used to compute 
the data of q in a neighboring processor) is overlapped with computations of ma- 
trix rows corresponding to the inner part of the domain, where the inner part is 
the domain without its halos. For a block distribution along the vertical axis, 
overlapping is possible if the halos on both sides of the processor domain do not 
overlap. For general banded matrices, the overlap can be partially achieved if the 
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number of rows assigned to a processor is, at least, twice the matrix bandwidth. The 
latency of the communication step in the inner product pT.q can be hidden by 
delaying the update of xi by one iteration. For the inner product rX-z, a solution 
which hides the latency has been proposed by Demmel et al. (1993) where an 
incomplete factorization is employed as preconditioner. 

As indicated above, our work adopts a parallelization strategy for the numerical 
simulations based on a geometric DD and the single program multiple data 
(SPMD) programming paradigm (Tai and Zhao, 2003). Here, the communication 
of data between domains is based on the message-passing interface (MPI) (Gropp 
et al., 1994). 

Domain decomposition of a mesh into a set of sub-domains that may be al- 
located to a set of processors involves finding a partition of the mesh so that each 
processor utilizes an equal amount of computational time. The nodes and control 
volumes/elements that are allocated uniquely to a processor are referred to as core 
mesh components in this work, with each processor having the task of calculating 
the flow field variables and nodal gradients for these components. Note that in the 
overlapping DD described above, the overlapping domains can be considered as the 
union of non-overlapping domains and overlapping layers. Therefore, each over- 
lapping sub-domain can be considered as a non-overlapping one that is enclosed 
with a layer of ghost nodes and overlapping elements, which overlap the sub- 
domains along the inter-processor boundaries. These ghost nodes store flow field 
variables and nodal gradients, which are transferred from neighboring sub-domains 
for the solution of variables within the sub-domain. Communication between these 
core and ghost nodes is based on MPI. The data flow direction is always from the 
core nodes to the ghost nodes. 

7.4.4. Programming paradigms 

Although we described the MPI, one can also consider other programming 
paradigms, such as the SM programming model (OpenMP, 1997) and two message- 
passing paradigms (MPI-1, 1994; MPI-2, 1997; and SHMEM, 1994). The synchro- 
nization points required for inner products can be implemented by using counters 
protected by lock variables. Additional flags can be included in order to grant 
permission for accessing halo data. As soon as a processor has computed the data 
on its borders, it enables the flag. If another processor requires these data, it waits 
for this flag to be enabled. Reset of counters and flags can be carefully implemented 
by means of odd and even sense-reversing flags to enhance performance and avoid 
data race conditions. 

In the message-passing version, MPI-1 and SHMEM libraries can be considered 
because of their better efficiencies in many computer architectures. MPI-1 libraries 
have been widely adopted as the message-passing interface of choice for many 
years. In this implementation, the inter-processor communication is performed 
through a special routine send that sends a message and a matching routine receive 
that receives a message. When using MPI-1 libraries, the waits for the arrivals of 
messages imply a synchronization by themselves. 



F Dobran and J.I. Ramos/Global Volcanic Simulation 361 

On the other hand, SHMEM libraries provide single-sided communication rou- 
tines in which any processor can put a data package on a remote memory, or it 
could 9et data stored there. When using SHMEM libraries, shmem_put is to be 
preferred over shmem_,qet because it allows communication overlapping, although 
the cache miss rate increases. Additional messages with flags can be added as in the 
OpenMP implementation for synchronization purposes if the computer architec- 
tures used ensure that the arrivals of messages keep the same order as that of their 
departures. 

In both shared-memory and message-passing paradigms, global barriers should 
be avoided because, when a global barrier is used, each processor must wait until 
the others finish their computations in order to continue with its own computations 
at the same point of the code. In addition, it is more efficient that a processor 
requiring data in a point of the code ('waiting point') uses the data generated by 
other processors at a previous point of the code ('permission point'). 

7.4.5. Computer architectures 

Our experience has been centered so far on the following computer architec- 
tures: 
�9 Cray T3E-900. A massively parallel processor (MPP) with 400 MHz DEC A1- 

pha-EV5.6 processors. For this architecture, the vendor supplies the message- 
passing programming models MPI and SHMEM. 

�9 Origin2000. A cache-coherent, non-uniform memory access architecture with 
400 MHz MIPS-R12000 processors. For this architecture, the vendor supplies 
OpenMP, MPI, and SHMEM. 

�9 Sun HPC6500. A uniform-memory access, symmetric multiprocessor system 
with 400MHz UltraSPARC-II processors. For this architecture, the vendor 
supplies MPI and OpenMP. 

The availability of cluster or distributed computing with OpenMP may offer 
advantages over the above computer architectures in terms of cost, availability, etc. 
For three-dimensional simulations of highly nonlinear reaction-diffusion equations 
exhibiting steep gradients and high temporal derivatives and two-dimensional sim- 
ulations of compressible chemically reacting flows in both confined and unconfined 
geometries, our experience of efficient parallel implementation of the Krylov sub- 
space method indicates that: 
�9 Optimized BLAS libraries for each architecture should be employed because 

they are more efficient than the ones developed by the users. In particular, the 
SciLib, Sun Performance Library (sunperf), and sgimath libraries should be 
employed in the Cray, Sun, and Origin2000 computers, respectively. 

�9 The choice of a programming model depends on the problem size and the 
computer architecture used. 

�9 The overlap in the matrix-vector product and the delay update of the x-vector 
do not improve much the performance of message-passing models. 

�9 Memory access overlap should be used, but without losing locality. 
�9 The ordered versions of the code with overlap significantly improve the effi- 

ciency of OpenMP codes. 
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�9 The inclusion of cache prefetching directives which are available in most recent 
architectures allows for data access on the highest level of hierarchy of the local 
memory, while other computations are being performed. 

�9 A reduction in the number of synchronization points does not improve the load 
imbalance. 

�9 Locality should be increased to the highest possible level. 
�9 Machine-specific libraries (such as saxpy) are preferred. 
�9 The computation reordering penalizes the cache performance. 

Based on this experience, a good scheduling of operations should maintain the 
computations in the same order as in the original algorithm; that is, every vector should 
be computed as near as possible to the operation where it is, required. In addition, 
a maximum exploitation of the locality of data and an overlap of halo messages with 
computations should be used, because they represent a large fraction of calculations. 

7.5. C O N C L U S I O N  

In this chapter, we have summarized our research efforts on the physical mod- 
eling, numerical solution, and computer implementation methodologies for the 
effective, reliable and accurate simulations of volcanic eruption columns. Volcanic 
plumes involve complex interactions between the material emitted from the volcano 
and the atmosphere into which this material is discharged. The erupted material 
consists of both volcanic gases and volatiles, and different size pyroclasts that result 
in gas-gas, gas-particle, and particle-particle interactions in the atmosphere. Typ- 
ical processes within a plume include condensation and evaporation of volatiles, 
fragmentation and aggregation of particulates, growth of aerosols and fine ash 
particulates into water droplets that produce precipitation, and chemical reactions 
between the volcanic and atmospheric constituents. 

Global scale dynamics and thermodynamics of volcanic plumes cascades the tur- 
bulent energy down to small scales where this energy is dissipated through the in- 
teraction with local microphysical processes. This interaction, in turn, modifies the 
global scale processes within the plume. Turbulence is ubiquitous in volcanic plumes 
and presents modeling problems, because the small scales cannot be adequately re- 
solved with today's technology and must be, therefore, properly modeled. Since 
existing pyroclastic dispersion models do not account accurately for the two-way 
coupling between the gaseous and particulate matter, we have developed a new model 
that does account for such a coupling in a more physically satisfactory manner. 

This model is based on volume averaging of single-phase transport laws for the 
conservation of mass, momentum, and energy, and on taking moments of these 
equations with respect to the center of mass of the averaging volume. The averaged 
form of transport equations accounts for both the mean motion and properties of 
each phase in the averaging volume and the structural or local effects within this 
volume. These structural properties consist of phase inertia and contraction/expan- 
sion or dilatancy effects, and thus account for small scales which are commonly 
modeled through subgrid scale turbulence models. The small scale effects are modeled 
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with an additional set of transport equations. The model also accounts for a yield- 
type behavior of the material when the particulate concentration gradients become 
high. We have also presented some closure or constitutive relations for an arbitrary 
number of phases undergoing mass, momentum, and energy exchanges, and addi- 
tional mass transport equations for modeling multicomponent multiphase mixtures 
with phase change and chemical reactions. The modeling approach presented here 
uses both the Eulerian and Lagrangian frameworks, depending on the size of par- 
ticles. The resulting modeling equations can be transformed into conservation-law 
form which is suitable for implementation with different numerical techniques. 

The discretization of the Eulerian phases has been performed using a domain 
decomposition technique in a multiblock grid consisting of hexahedra and tetra- 
hedra, a conservative finite volume formulation, and implicit, first- and second- 
order accurate discretizations of time derivatives. The multiblock technique allows 
to design grids that are adapted to the terrain topography and add and remove 
finite volumes in the leeward and windward sides, respectively, of the pyroclastic 
plume when there are crosswind effects. The discretization of the advective terms in 
the Eulerian phase equations is based on a weighted essentially non-oscillatory 
method that is second-order accurate in regions with steep gradients of flow var- 
iables, and third-order accurate in smooth regions. 

Two different approaches have been followed in the time discretization of the 
Lagrangian phase equations. The first uses time linearization and results in linear 
algebraic equations at each time level that are solved by means of the biconjugate 
gradient-stabilized method for nonsymmetric matrices in each subdomain or block. 
This technique, however, does not provide acceptable results when either the time 
step or the duration of a volcanic eruption are large due to the accumulation of 
temporal truncation errors. For this reason, a second method for solving the non- 
linear algebraic equations that result from the space and time discretizations of 
governing equations in each domain is proposed. This method uses an inexact 
Newton method and the resulting linear equations at each iteration are solved by 
means of a Krylov subspace method that uses algebraic domain decomposition and 
an incomplete lower-upper factorization preconditioner. 

Due to the spatial and temporal characteristics of volcanic eruptions, an accurate 
simulation of the modeling equations is a rather demanding task. This requires the 
use of advanced parallel computer paradigms that take into consideration the com- 
puter architecture, the synchronization of messages, and the processors' latency and 
lag times. Our experience has so far been centered on massively parallel processors, 
cache-coherent, nonuniform access computer architectures, and symmetric multi- 
processors with both OpenMP and MPI. This experience has shown that, amongst 
other considerations, the overlap in matrix-vector products does not improve much 
the performance of message-passing models, memory access overlap should be used 
without losing locality, locality should be increased to the highest possible level, 
ordered versions of the code with overlap significantly improve the efficiency of 
OpenMP codes, and inclusion of cache prefetching directives allows for data access 
on the highest level of hierarchy of the local memory while other computations are 
being performed. 
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Following an extensive verification stage involving the assessment of the accu- 
racy and efficiency of different numerical solvers, number of phases, and phase 
interactions, we will begin validating the pyroclastic dispersion model. After that, 
we will ascertain that the predictions of the model reproduce the behavior of some 
key eruption columns, including those of Vesuvius. Once our verification and val- 
idation studies are completed, the pyroclastic flow model described in this chapter 
will be integrated with our magma chamber dynamics, opening of volcanic con- 
duits, and magma ascent models into a simulation package or Global Volcanic 
Simulator. As discussed in Chapter 1, the objective of such a simulator is to assess 
the effects of different eruption scenarios on the territory surrounding Vesuvius, for 
the purpose of developing a more secure habitat for over one million people living 
in the close proximity of this volcano. 
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