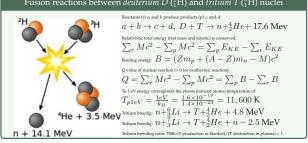
# FUSION ENERGY SOLUTION TO GLOBAL WARMING AND FOSSIL DEPLETION

Flavio Dobran, GVES, New York, U.S.A., dobran@gvess.org

# **Energy Supply for Humanity**

## **Energy Supply Objectives**


- Energy resources should be sustainable;
- Energy produced should be socially acceptable;
- Energy supply systems should be environmentally acceptable;
- Releases of pollutants into the environment from energy supply systems should be limited;
- Energy systems should not cause health problems;
- Energy produced should be affordable for promoting sustainable development.

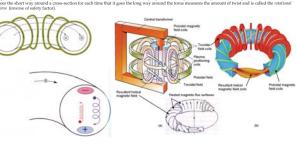
### **Energy From Fossil Fuels**

- 12 TW are today required for humanity on Earth;
- 80% of energy produced is supplied by fosil fuels;
- 40 GtCO<sub>2</sub>e/yr are emitted into the atmosphere;
- Earth's climate system is warming;
- Fossil fuels are severely being depleted.

### Energy From Nuclear Fusion

- High power density  $(10 \text{ MW}/\text{m}^2)$ ;
- No long-lived radionuclides are produced;
- No greenhouse gases are produced;
- Fusion fuels are sustainable for millions of years;
- Existing energy distribuion systems can be utilized;
- Controlled fusion is difficult to achieve and will take perseverence.

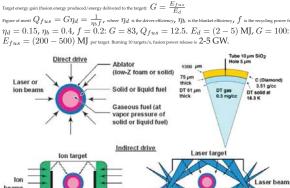



# **Fusion Energy Harnessing**

### **Magnetic Confinement Fusion (MCF)**

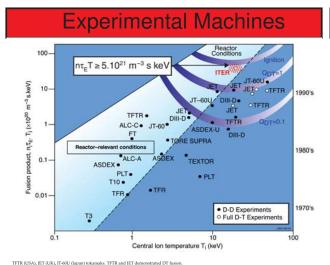
ignition requires:  $Q_{fus} = \infty (P_{aux} = 0)$ ; Fusion power plants rameter.  $n\tau_E = \frac{3k_BT}{\frac{1}{4}(1/Q_{fus} + \frac{1}{5})Q_{DT} < \sigma v > -C_bT^{0.5}}$  $\tilde{Q}_{fus} = 30 - 50$  $Q_{DT} = 14.7 \text{ MeV}, Q_{fus} = 1, < \sigma v > \text{evaluated at } k_B T = 12 \text{ KeV}: n\tau_E > 10^{20} \text{ sm}^{-3}$ 

To confine plasma in a torus a helical magnetic field is required (tokamak and stellarator configurations).

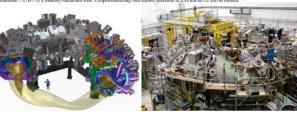

For stable operation, the *safety factor* above 3 is required.



 $\nabla P = J \times B, B \cdot \nabla P = 0, J = \sigma (E + \frac{1}{2}v \times B)$ 

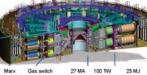

# JET (UK) and TFTR (USA) tokamaks produced fusion.

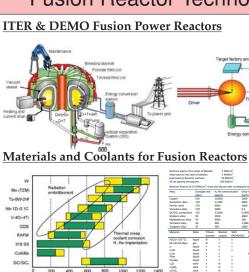
# **Inertial Confinement Fusion (ICF)**



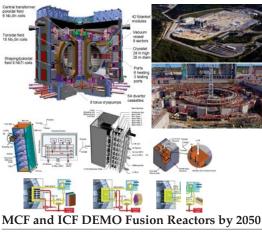


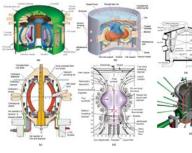

- heavy-ion beams), pulsed power (tens of MA current discharges);
- Fuel target ignition in 100 ps: Hot spot, fast, shock, Z-pinch;
- Instabilities: Parametric (caused by laser radiation), hydrodynamic (caused by density gradients in fuel during compression)
- Scientific feasibility of inertial fusion: Not yet demonstrated, but produced  $\alpha$ -heating with indirect laser DT targets at LLNL.







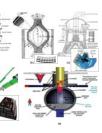











# **Fusion Reactor Technology**



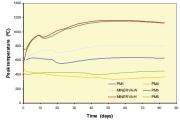
| 2 MW/m <sup>2</sup><br>5 MW/m <sup>2</sup><br>50 MW/m <sup>2</sup><br>50 GW/m <sup>2</sup><br>sto GW/m <sup>2</sup><br>sto decay rate correspond to 3 years at 5 MW/m <sup>2</sup> . |                                           |           |                 |                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------|-----------------|--------------------------------|--|
|                                                                                                                                                                                      |                                           |           |                 |                                |  |
| , He transmutation                                                                                                                                                                   |                                           | Dose rate |                 | Decayheat                      |  |
| ippm)                                                                                                                                                                                |                                           | (Su(ft)   |                 | (W/kg)                         |  |
| 0,000                                                                                                                                                                                |                                           | 2000      |                 | 1                              |  |
| 1,000                                                                                                                                                                                |                                           | 4000      |                 | 3                              |  |
| 000                                                                                                                                                                                  |                                           | 1000      |                 | 1                              |  |
| 000                                                                                                                                                                                  |                                           | 0.3       |                 | 0.005                          |  |
| 3,000                                                                                                                                                                                |                                           | 0.0001    |                 | 0.00003                        |  |
| 500                                                                                                                                                                                  |                                           | 4000      |                 | 4                              |  |
| 000                                                                                                                                                                                  |                                           | 500       |                 | 0.3                            |  |
| 00                                                                                                                                                                                   |                                           | 1,000,000 |                 | 1000                           |  |
| 00                                                                                                                                                                                   |                                           | 100       | 0               | 10                             |  |
|                                                                                                                                                                                      |                                           |           |                 |                                |  |
| Manket                                                                                                                                                                               | Wth                                       |           | Wah             | With                           |  |
| Blanket<br>coolant                                                                                                                                                                   |                                           | 205       | With<br>V alloy | With<br>SIC, W                 |  |
| coolant<br>Y                                                                                                                                                                         |                                           | 205       |                 | SIC, W                         |  |
| coolant<br>Y<br>Y                                                                                                                                                                    | PAEM/I<br>Y<br>Y                          | 205       |                 | SIC, W<br>N<br>Y               |  |
| y<br>Y<br>Y<br>Y                                                                                                                                                                     | RAEM/I<br>Y<br>Y                          | 205       |                 | SC, W<br>Y<br>Y                |  |
| y<br>Y<br>Y<br>Y<br>Y                                                                                                                                                                | PAEM/I<br>Y<br>Y                          | 205       |                 | SIC, W<br>Y<br>Y<br>Y          |  |
| y<br>Y<br>Y<br>Y<br>Y                                                                                                                                                                | RAFM/I<br>Y<br>Y<br>Y                     | 206       |                 | SC, W<br>Y<br>Y<br>Y<br>Y      |  |
| roolant<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y                                                                                                                                                | RAEM/I<br>Y<br>Y<br>Y<br>Y                | 205       | V alloy         | SC, W<br>Y<br>Y<br>Y<br>Y<br>Y |  |
| coolant<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y                                                                                                                                      | Y<br>Y<br>Y<br>Y<br>Y<br>Y                | 305       | V alloy         | SC, W<br>Y<br>Y<br>Y<br>Y      |  |
| coolant<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>N                                                                                                                                      | FAFM/I<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y      | 205       | V alloy         | SC, W<br>Y<br>Y<br>Y<br>Y<br>Y |  |
| roolant<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>N<br>N                                                                                                                                 | RAFM/I<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y | 205       | V alloy         | SC, W<br>Y<br>Y<br>Y<br>Y<br>Y |  |
| roolant<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>N<br>N<br>N<br>N                                                                                                                            | RAFM/I<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y | 205       | V alloy         | SC, W<br>Y<br>Y<br>Y<br>Y<br>Y |  |
| roolant<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>N<br>N                                                                                                                                 | RAFM/I<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y | 005       | V alloy         | SC, W<br>Y<br>Y<br>Y<br>Y<br>Y |  |





# Sustainability of Fusion Energy

## **Prospects for Achieving Fusion Ignition**


- DT fusion in JET and TFTR tokamks has been achived for several seconds only;
- LHD, W7-X, and ITER will help build MCF DEMOs;
- ICF laser and ion beam advances show great promise.

### Sustainability of DT Fusion Materials

- D resources: 1 part of D<sub>2</sub>O/6400 parts of H<sub>2</sub>O;
- T can be produced from Li and neutron multiplying materials Be and Pb. Resources: Li 230 Gt (10<sup>6</sup> yrs), Be 80 kt, Pb 1.5 Gt;
- He is used in superconducting coils (Nb<sub>3</sub>Sn and NbTi) and to cool blankets. Resources: He 10 Mt, Nb 4 Mt;
- Issues with Li (if also used in batteries), Be, He, Nb;
- Advanced fusion fuels:  $p+^{11}B \rightarrow 3\alpha$ . Resources: B 210 Gt.

### Safety and Environmental Issues

- Only tritium and neutron-activated materials are produced in fusion reactors. No high-level radioactive waste is produced;
- No long-term isolation of activated materials is required. Once removed, materials can be safely handled after 50-100 years;
- Fusion reactor contains a small amount of fuel inventory and low power density. Reactions are terminated after 1 minute.;
- No active cooling of fusion reactor is required after an accident;
- Worst possible accident does not constitute a major hazard to populations outside the plant (< 4 mSv/y background).



# Conclusions

- Sustainability of fusion energy requires: Sustained ignition, long-term supply of fusion fuels, low-activation materials, high efficiency energy conversion systems, safe operations of plants;
- Fusion will become (with perseverence) a sustainable energy source.