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ABSTRACT

The formulation of conservation, balance and constitutive equations for
multiphase flows requires the considerations of the levels of description of
the theory and of the existence and consistency of the theoretical structure
in a physical world., A theory of multiphase mixtures should be formulated on
a level that avoids the solution of the multiboundary problem, and it should
be consistent with proper and rigorous averaging procedures applied to the
macroscopic field equations of each phase. The averaging or reductionistic
procedure cannot, however, yield a rigorous theory, for, eventually, this must
be abandoned in order to define rigorously kinematic concepts. The degree to
which a reductionistic or a holistic theoretical structure is accepted plays a
crucial role in the development of constitutive equations, and both of these
approaches are discussed in this paper. Based on these investigations, results
for constitutive equations are reviewed, and it is shown that although the
holistic or continuum mechanics approach yields a self-consistent theory and
many useful results, it is not very clear that this procedure will yield a
theory of multiphase mixtures that is fully consistent with the physical world.

1. INTRODUCTION

While a considerable advance has been made in the development of useful
models for two-phase flows, this development has not been as rapid for flows
involving three or more phases. The main reasons for this:are: 1) two-phase
flows are easier to study analytically and experimentally, and 2) the practical
need to understand two-phase flows has been greater. Modeling of transient
and nonequilibrium flow phenomena places severe demands on any model of multi-
phase flows, and for this reason it is, therefore, necessary that the conser-
vation, balance and constitutive equations have a strong foundation: pragmatic
in order to conform with the physical reality and idealistic in order to
possess a sound theoretical structure. The degree of pragmatism or idealism
in a model is always disputable which, of course, must be in order to advance
the present state of knowledge.

The analysis of multiphase flows is difficult due to their finite inter-
facial area. Most, if not all, of the present models reflect a particular
special case of this area or flow regime. Flow regime modeling is very useful
for steady flows; however, many practical situations involve unsteady multi-
phase flows for which the current modeling practices are highly unsatisfactory
due to the inadequate knowledge of the flow regime transition physics. Al-
though it is conceptually possible to describe a multiphase mixture by the
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well-established macroscopic conservation and balance equations of each phase
separately and by the interfacial boundary conditions, it is, however, not
possible practically to follow the usually very large number of interfaces,
and, as a consequence, the analytic problem becomes intractable. The recogni-
tion of this fact has led to the diverse modeling practices - all of which
are based on a continuum approach. The conservation and balance equations of
multiphase flows constructed in this manner are either postulated [1-2] or
they are obtained by an application of suitable averaging of the macroscopic
field equations of each phase [3-8]. Both approaches have deficiencies:

the first, because it lacks a strong physical justification, and the second,
because it lacks a reconciliation between different levels of description.
The above-mentioned idealistic or pragmatic approaches which are followed in
the construction of conservation and balance equations for multiphase flows
also play a crucial role in the subsequent development of constitutive equa-
tions, as discussed below.

In view of the fundamental issues which surround the formulation of con-
servation, balance and constitutive equations for multiphase mixtures, it is
important that these issues be discussed in order that future theoretical de-
velopments be built on a stronger foundation. This discussion is important
since all too often many proposed models tend to become personalized theories
adopted by those who propose them and by the users of these theories who be-
come familiar with them. Wallis [9], in a recent review article, concludes
that "The ad hoc approach is likely to retain its preeminence as the dominant
method of analysis for the foreseeable future." This conclusion, while being
pessimistic, is nevertheless well-founded since it is based on extensive ex-
periences in two-phase flow modeling. With a considerable amount of knowledge
already existing and with the availability of computational techniques and
advanced instrumentation, the future of multiphase flow modeling appears more
cptimistic to this author.

The formulation of conservation and balance equations for multiphase flows
is discussed in Section 2 where it is shown that despite a considerable prog-
ress many problems still remain. In Section 3, the discussion is carried out
on the formulation of constitutive equations where different methods of analy-
sis are reviewed. It is shown there that it is not very clear which approach
to utilize but that the holistic or continuum mechanics procedure provides
very useful results.

2. ON THE FORMULATION OF CONSERVATION AND BALANCE EQUATIONS FOR MULTIPHASE
FLOWS

All the formulations of conservation and balance equations for multiphase
flows utilize continuum modeling which are based on either of the two following
approaches:

a) Extension of single-phase multicomponent mixture equations to
multiphase mixtures.

b) Averaging of the instantaneous field equations of each phase
over the appropriate time or space segments.

In the first approach, the theory of single-phase multicomponent mixtures
[10,11] is extended to multiphase mixtures [1,12]. The fundamental assump-
tions in this theory are the coexistence of all phases at each point in space
and that each coexisting phasic continuum can be assigned unique properties
such as density, velocity, energy, etc. Additional important characteristics
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of this theory are as follows:

1) No attempt is made in the theory to justify the field equations
from any molecular or local macroscopic level for each phase.

2) The conservation and balance equations for the mixture as a whole
do not allow for source terms.

3) In the absence of external torques or couple stresses, the stress
tensor for the mixture as a whole is symmetric.

4) The entropy equation for the mixture as a whole is assumed to be
valid unless the nonequality of entropy and heat fluxes is assumed
in which case an entropy equation for each constituent in the mixture
is also postulated to be valid.

While in the theory of single-phase multicomponent mixtures the last
three conditions given above appear to be justifiable in so far as no contra-
dictions with classical equilibrium thermodynamics have been found, it is not
clear that these conditions should also be valid for a multiphase mixture - at
least as long as we accept the validity of averaging procedures discussed below.

The averaging approach followed in the construction of conservation and
balance equations for multiphase mixtures is based on the concept that a pro-
per and clear way to obtain multiphase field equations is to perform averaging
of the local macroscopic field equations for each phase over a suitable time
or space domain. Thus, Drew [3] carried out time and volume averaging,_lshii
[4] performed time averaging, Delhaye and Achard [5] derived one-dimensional
volume-, time-, area- and space-averaged two-phase flow equations, Dobran [7]
derived multidimensional volume-averaged equations, Bataille and Kestin [6]
and Marle [8] utilized the theory of distributions to obtain volume and volume-
time-averaged multiphase field equations, respectively.

With all these averaging procedures proliferating through the literature,
some doubts arise whether any of them should be accepted as yielding the
correct form of multiphase field equations. While ad hoc models can be justi-
fied on the basis of a particular averaging procedure, it is important to note
that the objective of averaging is to produce a rigorous set of conservation
and balance equations for multiphase mixtures. This being the case, then, is
there any relative merit between different averaging approaches? In the fol-
lowing, we shall attempt to reconcile the relative advantages and disadvantages
of various averaging formulations.

The time-, area- and segment-averaged equations have the disadvantage
of being singular under certain flow conditions (for the case of time-averaged
formulation when the interface becomes stationary in the flow field). This
disadvantage is, clearly, bothersome and to smooth out the singularities,
further averaging is usually performed. The smoothened field equations are
all of space-time variety and immediately bring about the following concerns:

1) The field equations do not lend themselves to the investigation
of constitutive equations by utilizing the modern foundations
of continuum mechanics since the principle of objectivity or
material frame invariance cannot be consistently utilized on the
time-averaged equations unless they are also assumed to be ergodic.

i . . A
2) Averaging over a restricted space domain to obtain one-d1mc§5109a1
field equations leads to difficulty when studying the constitutive
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equations since the conclusions about the invariance properties
can only be obtained from the general three-dimensional equations
and not from any restricted class of them.

3) The time-averaged turbulent field equations are different from the
space-averaged equations in the sense that the latter equations contain
additional turbulent correlations,as discussed below.

The nature and subtleties involved in different averaging procedures dis-
cussed above can be expounded by selecting one such procedure for discussion
and then by pointing out the advantages and disadvantages of this procedure
and its relation to other averaging approaches. For this purpose, the multi-
dimensional volume averaging procedure developed by Dobran [7] is selected.

The formulation of conservation and balance equations for multiphase
flows utilizing the volume averaging procedure follows by considering a multi-
phase flow field such as that shown in Fig. 1. The volume pertaining to phase
@, «=1, ..., ¥, in the arbitrary and fixed averaging volume V is Va = £ Vaé

such that V = 51 V_. For each phase a and volume V . the macroscopic tield
equations represent?ng the conservation of mass and 841ance of linear momentum,
angular momentum, energy and entropy can be written as follows [7,13]:

3 s

3t Postas) * V' (Pgs¥as Vo) * V'Ias = Paslas = Pas Bag = © )
where Y 5 Ja , & 6and B 5 are given in Table 1. At the interface between
phases & and B we Ttave th&jump conditions [7,13]:

(maﬂ Yas * Jaﬁ naé) * (manBn * ‘]Bn nSn) = ﬁaé @

P(V)

Figure 1. Definition of the Averaging Volume in a Multiphase Flow Field
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Table 1. Coefficients of the Conservation Equations (1) and (2)
where

s = a5 (Vas = Sped " Mas - (3)

S is the interface velocity, n is the unit normal vector which points
ou.wards from the volume V_. , m is the interphase mass transfer rate which
arises due to the phase change, and A . is the surface tension term (or some
?ther interfacial source density) and is defined in Table 1. H is the mean
interface curvature, V. is the surface gradient vector and v is the surface
tension coefficient. C‘lc.'early, a# B, N5 =-Ng and § =S, . Furthermore
in Table 1, V s is the velocity, p Gis %ﬁe masssgensity, ignthe stress ten-
sor, b . is the external body forde per unit mass, €_; is %ﬁe internal energy
per uni mass, q_. is the heat flux vector, s is the entropy per unit mass,
haétls the entropy flux vector, 0 . is the aBfolute temperature, T is the
h?a generation rate per unit volume, and £ . and A_ are the entropy produc-
tion rates in the continuum and at the interface, réspectively.

The volume averaging process consists of volume averaging of Eq. (1)
over the portion of volume V which the phase o occupies at time t, i.e.

£ [Eq. (1)]dV = 0 .

5 Vas (4)
Utilizing Leibnitz's rule and Divergence Theorem [7], Eq. (4) is reduced to:

3 .

¥ vaqpuwa> + V- V{J(paq}a v

- g f

> o+ - <, . - =
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aM(maé Yas * Jas Mgsldas (5)

where the volume-averaged quantities are defined as follows:

S s T [0 F.oav.
a7 g e ©
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Equation (5) is the general transport equation of phase o and will be
identified as the macro-macroscopic transport equation of phase o as opposed
to Eq. (1) which is the macroscopic transport equation of phase a. The
volume averaging procedure constructed above induces a mapping such that Eq.
(5) represents the superposition of y continua, i.e., at each point of space
and at each instant of time a continuum of phase o can be identified and in
this report the theory of multiphase mixtures constructed in this manner is
identical to the theory of single-phase multicomponent mixtures.

All space and time averaging procedures lead to an equation similar to
Eq. (5); the difference between them, however, is in the interpretation
of the averaged quantities. Furthermore, Eq. (5) is not useful until a connec-
tion is made between the variables defined in the macroscopic field Eq. (1)
{pa, ¥ , v, etc.) and the averaged variables in the macro-macroscopic field
Eq. [5?. %n the next step of the analysis, therefore, two kinds of averaged
variables are introduced. These are

i) The density-weighted averages, Hu

- <p H>
How faa (7)
o <0,

ii) The phase averages, ﬁa and h§

<H > (8)

H= <H_ > (9)

The density-weighted variables are defined for all those macroscopic variables
on a unit mass basis. In addition, the macro-macroscopic velocity of phase a,
V _, is also defined as the density-weighted average for the reasons that a
finite size instrument can only measure this velocity and, when substituting
for ¥ , J, & and B_ from Table 1 for the conservation of mass in Eq. (5),
the conservation of mass equation of phase a,

) - e A
%t Pa’ vpa va'-}éfammaﬂ da ’ (10)

becomes similar in appearance to the macroscopic continuity equation of the
same phase. In the time-averaged formulation, the velocity V_ is defined as
the time-averaged velocity and in the volume-time-averaged formulation it is
defined over a space-time domain.

All space and time averaging approaches lead to the conservation of mass
equation that is similar to Eq. (10); however, the balance equations of momen-
tum, energy and entropy differ from one formulation to another in the inter-
pretation of the following term:

VootV T . (11)

In the time-averaged formulation, the macrogcopic field variable ¥ is decom-
posed into a dgnsity-weighted time average ?a and into a fluctuati%g or tur-
bulent field ?a , i.e.

o '
yo= ¥ vy (12)
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whereas in the volume and time-averaged formulation ¥ in Eq. (12) must be
interpreted as the density-weighted space-time averag% and ¥’ as the space time
fluctuation. In the volume-averaged formulation, no splitting up of the field
variables as defined by Eq. (12) is performed; instead, the covariance coeffi-
cients are introduced as the differences between the average of the product

of macroscopic variables and the product of the macro-macroscopic field vari-
bles, i.e.,

—_— ey
VG‘:QQ\P(} Va>-\f pu‘t’a Va . (13)

From the above discussion, it is clear that depending on the averaging
procedure used in the formulation of conservation equation of mass and balance
equations of momentum, energy and entropy for multiphase flows, the
resulting field equations can be quite different. Using Eq. (12) in the time-
and space and time-averaged formulations gives rise to the macro-macroscopic
field equations in terms of mean and fluctuating quantities where the latter
quantities are interpreted as the turbulent contributions. The volume-averag-
ed macro-macroscopic field equations [7] contain instead the covariance co-
efficients expressed by Eq. (13) where they are interpreted as the nonlocal
effect in the theory. This interpretation arises from the effect of the size
of averaging volume V on these coefficients. When the multiphase mixture be-
comes dispersed the effect of nonlocality disappears.

Another significant difference between the time-averaged and volume-
averaged field equations is in the formulation of turbulence characteristics.
Time averaging of the volume-averaged linear momentum equation, for example,
gives rise to velocity-velocity, partial density-velocity, partial density-
velocity-velocity and partial density-pressure correlations while the time-
averaged linear momentum equation gives rise to the velocity-velocity correla-
tions [4] only.

In view of the discussion above, it is my conclusion that the volume-
averaged conservation and balance equations for multiphase mixtures have the
most desirable properties to motivate the construction of a theory of multi-
phase flows since:

1. The equations are not singular.

2. The equations are amenable to the study of invariance
properties using the principle of objectivity or frame
indifference without giving rise to any inconsistencies.

3. The turbulent field equations are richer.

In the construction of a theory of multiphase mixtures utilizing the
averaging approaches described above, one follows a reductionistic or prag-
matic approach. This means that the theory should be formulated by piecing
together its fundamental building blocks (the macroscopic field equations of
each phase) with the pieces which describe how these blocks should be put
together (the macroscopic interface or boundary conditions). Clearly, differ-
ent averaging procedures lead to different interpretations of the resulting
field equations, as discussed above, and some procedures are more desirable
than others (for example, the volume averaging) since the multiphase equations
constructed in this way insure the properexistence and consistency properties
of the theory. This, however, should not be viewed necessarily as a proper
way of constructing a rigorous theory, for if this were the case, then a re-
conciliation would have to be made between the macroscopic and macro-macro-
scopic field variables. How this can be done in a physically convincing
manner is at the present time open to speculations.
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The approach that has been followed in constructing a theory of multiphase
mixtures in Reference 7 involves utilizing the volume averaging procedure not
in the hope of deriving the multiphase field equations but to motivate the con-
struction of the theory since, as discussed above, the volume-averaged equa-
tions have more desirable properties than the equations from other averaging
approaches. Having established the macro-macroscopic transport Eq. (5) and
definitions expressed by Eqs. (6)-(9), it is assumed that to each coexisting
or superimposed continuum of phase o can be assigned particles X and config-
urations Xa of these particles at time t such that at the current space posi-
tion X we can write

X = X, (X, t) . (14)

Furthermore, to each particle of phase o can be assigned a reference configura-
tion K. at some time to<t such that its reference position is expressed by
the fo?lowing equation:

X, = K, (X, to) ; (15)

Combining Egs. (14) and (15) we obtain:
X= X K (X t0), 0 =X e (Xt a6)

where ¥ is the deformation function of a particle of phase a. The velocity
and ade¥Sration of particle X_ follow by differentiating Eq. (16) with respect
to time while keeping the iden%ity of particle constant. In the next crucial
step of the analysis, the velocity and acceleration obtained from Eq. (16)

are identified with the density-weighted velocity and acceleration defined by
Eq. (7), i.e.,

~ XXt
Vo3¢ an
2
DR i SR © R
(AL, S N (18)
a 52

It should be noted in Eq. (18) and in the equations that follow that a back-
ward prime affixed to the subscripted symbols with o indicates the material
derivative 'following' the particle of the phase a.

The density of a multiphase mixture, p, and the center of mass velocity,

v are defined respectively as

Y T _ A~
p=L p , pV =L O v (19)
while the diffusion velocity of phase a, uc:’ is defined by

u =v - v. (20)
- Y _ o~
If ]"a and T, where pl' = L pal"a, are differentiable functions of X and t then
a=1
by utilizing the definitions of material derivatives

b
Y _%a ry 2= 9F
Ig=ae VI Ve Loae e GV DY (21)
we have:
S o - 1)

& L= o ~ g ap -
wla - Vool uy * G+ Voo, VO T - GF+V-owT ],
(22)

a=1

where 3p/3t + V- oV = 0 by virtue of the conservation of mass equation for the
mixture as a whole (Eq. (A.1)).

Ui_:ilizing Eqs. (6) - (9) and (17) - (21) in Eq. (5) results in the
following conservation and balance equations for phase a:

~
- — ~ A
Mass: Py + Py V. vV, = ¢, (23)
\
Linear Momentum: v =VT + 3% E + P (24
a "o a oD * Po )
¥ = T
Angular Momentum: Mcx = Ta - Tu (25)
. - X =T ~ - 4 A
Energy: Py €y = tr(Ta v V) - V.qa £ P Taik € (26)
- ﬁ& Eaga A~ A
Entropy: Pasa * V'('g) T SaSe  Sg 20 (27)
a o

In Eqs. (23) - (27), Ga is the mass supply of phase a or the rate of phase
change per unit yolume of the mixture, is the (partial or phase average)
stress teﬁsor, is the external body f%rce, is the linear momentum
supply, is th€ angular momentum supply, € 'is the internal energy, q

is the (partial or phase average) heat flux vector, T is the heat genera%ion
rate, Qa is the energy supply, 's":a is %;he entropy, § is the entropy supply
and ©_ is the absolute temperature. denotes the, sE‘framspase of the second
order”tensor T _(a linear transformation), and tr( T V ¥.) denotes the
tracg of the product of two linear transformations a and & va’ i.e, tr

£ T v ja) =ATai‘ Bfai/ax- . The complete expressions for the supply terms
Cys Gpu,M 4 Ea dna ¢ are presented in Reference 7. Here, only the ex-
pressions %or mass suppT’y . and linear momentum supply pcc are shown. Thus:
A: ial 2l
¢ =-zIr [ m,da (28)
o Vs ‘a ad
ﬁz—ev—-l-zf m.V :-T.n Jdda- V-C 29
o ata " Vo¢da. ad " ad ad "ad lo ? (29)
where
VO‘. e -
Clu o7 “0% Vu®vVv, > - o, VOV, (30)

is the covariance coefficient that represents the nonlocal effect and the
symbol ) denotes the tensor product.

_ The conservation and balance equations for a multiphase mixture are ob-
tained by summing up from o = 1 to a = y each of the Eqs. (23) - (27). The
resulting field equations as well as the compatibility conditions between the

31
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phasic and mixture equations are reproduced from Reference 7 in Appendix A of
this paper for completeness.

In the volume-averaged equations presented above, the covariance coeffi-
cients in the momentum, energy and entropy supplies or interaction terms of
phase o can be viewed as accounting in the theory for nonlocal effects. When
the multiphase mixture becomes dispersed and the averaging volume approaches
zero the nonlocal effects should be negligible. With a finite interfacial area
the region of nonlocality can be associated with the size of the averaging
volume V and it is through such a construction that V can reenter into the
framework of the theory.

The macro-macroscopic multiphase field equations (Eqs. (23) - (27)) are
similar in appearance to the single-phase multicomponent mixture equations
[10,11] except for the following features:

1) In the multiphase field equations above, the,linear momentum source
term P_, the angular momentum source term M _, the energy source term
ém and Phe entropy source term §m are not netessarily equal to zero
since they account for two effects: a) for the interfacial sources
such as surface tension, and b) for the nonlocal effects.

2) The stress tensor for the mixture as a whole is not necessarily
symmetric due to a) and b) in 1) above even if the mixture is not
acted upon by the body couples and couple stresses.

3) In the above theory of multiphase mixtures, the entropy Eq. (27) for
phase o appears naturally while in the theory of multicomponent mix-
tures [10,11] an entropy equation for the mixture as a whole can only
be used in order to achieve consistency of the theory with the classi-
cal equilibrium thermodynamics. From this, it follows that if each
phase is composed of two or more chemical constituents, then an entropy
equation for each constituent in the phase is not allowed.

As the above discussion shows, it should be clear that the final set of
field equations for multiphase flows, Eqs. (23) - (27), are not entirely formu-
lated utilizing a reductionistic approach, for this would not have led to the
rigorous theory as brought about by the definition of kinematic concepts in
Eqs. (14) - (22). The final set of field equations reflect a blend of pragma-
tism as well as idealism: pragmatism in the sense that these equations are con-
sistent with the volume averaging approach and idealism in the sense that the
equations are given a theoretical foothold by the definition of kinematic con-
cepts. We will see in the next section that the degree to which reductionistic
or holistic belief is placed on the models has a great bearing on the investi-
gation of constitutive equations for multiphase mixtures.

3. ON CONSTITUTIVE EQUATIONS FOR MULTIPHASE FLOWS

In the previous section, we have encountered some methods for formulating
field equations for multiphase mixtures although, strictly speaking, there are
only two such methods that are exclusively utilized: extension of the single-
phase multicomponent mixture field equations to the multiphase mixtures and
averaging of the macroscopic field equations of each phase over the appropriate
time and space segments. A similar situation also exists in the construction
of constitutive equations for multiphase flows in the sense that use is made
of one of the following two general approaches:
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a) Formylaticn of constitutive equations from tne macroscopic modeling
considerations (reductionistic approach).

b) Formglation of constitutive equations from macro-macroscopic modeling
considerations (holistic approach).

In the first approach, where the constitutive equations are deduced
th?ough the macroscopic modeling, two procedures can be distinguished: 1) aver-
aging of_thc macroscopic constitutive equations of each phase over the appro-
priate time or space segments [4], and 2) phenomenological approach inspired
by the flow-pattern modeling [6,9, workers carrying out ad hoc modeling of
multiphase flows].

_ An attempt to deduce the constitutive equations for two-phase flows by
time averaging of the macroscopic constitutive equations of each phase was made

by ;sbii [4]. This reductionistic approach can be criticized for the following
deficiencies:

1) Failure to account in the constitutive equations for the organized
structure of the multiphase flow field. The degree of this deficiency
can, of course, be disputed but to justify it, consider a bubbly two-
phase flow. At the macroscopic level of individual bubbles or parts
of bubbles no explicit insight can be gained as to why individual
bubbles are in a given global or macro-macroscopic state. Averaging
of the macroscopic constitutive equations of each phase leads to a re-
lation between the macroscopic and macro-macroscopic states. However,
this procedure is incomplete, because the constitutive equations
averaged in this manner lack the complete global information which is
necessary for the proper formulation of macro-macroscopic constitutive
equations. In a bubbly two-phase flow, the agglomeration or disinte-
gration of bubbles is triggered by the global information produced
from the organized character of large number of bubbles or by the
conditions specified by the macro-macroscopic state of the flow field.

2) Failure to provide a closed system of equations since averaging of the
mgcroscopic constitutive equations leads again to covariance coeffi-
cients or turbulent correlation coefficients that need modeling through
additional constitutive equations.

) The easiest way to construct constitutive equations for multiphase flows
is through a phenomenological modeling of individual flow regimes (bubbly flow
annular flow, etc.). This approach has been widely used for the practical ’
design of multiphase flow equipment, and it will continue to be used primarily
because of its simplicity and established confidence [9]. For mixtures of
three or more phases this approach has not been adequately explored.

‘In the second approach in the formulation of constitutive equations for
mul?lphase mixtures, where the constitutive equations are deduced from the
holistic or macro-macroscopic modeling considerations, two modeling procedures
can be also identified. These are: 1) the procedure followed in the classical
thermodynamics of irreversible processes [16], and 2) the procedure of single-
phase continuum mechanics [13].

As pointed out by Bataille and Kestin [6], the constitutive equations for
multiphase mixtures derived on the basis of an approach from the classical
thermodynamics of irreversible processes require the existence of a macro-
macroscopic fundamental equation of state or of a Gibbs equation. Fur-
thermore, it is also required that the resulting entropy equation exhibits the
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bilinear form in terms of fluxes and forces. Marle [8] and Hung [17] utilized
this procedure by making a highly questionable assumption on the equality

of macroscopic and macro-macroscopic fundamental equations and derived some
special form of constitutive equations.

The continuum mechanics approach to study the constitutive equations is
refuted by some and praised by others.
the method "...sufficiently arbitrary and general to account for nearly any
kind of situation" [6], or unjustifiable because it is based on questionable
principles of material frame invariance, equipresence, positive entropy pro-
duction and on a number of other points [18]. While it is true that some
workers in single-phase continuum mechanics have used the approach beyond phy-
sical justification, it still remains to be proved that the general procedure
is incorrect. Those who refute the foundational basis of continuum mechanics
start from special models of the physical world and argue to prove the trouble
spots. While their (reductionistic) argument might be correct, is it not also
safe to argue that it is just possible for some information in this approach,
perhaps inconsequential at a first glance, to have been neglected which leads
to false conclusions? As far as the linear theory of constitutive equations
is concerned, there is, however, essentially no opposition to the unsoundness
of the continuum mechanics approach, and it is, therefore, in this approxima-
tion that certain results for constitutive equations of multiphase flows will
be summarized below.

Constitutive equations for multiphase mixtures using the continuum
mechanics approach, have been studied to various degrees in References 1, 12,
14, 15 and 19. The important feature in the continuum mechanics approach
is that the entropy equation is utilized to obtain restrictions on the consti-
tutive assumption. Based on the field equations extended from the theory of
multicomponent mixtures to multiphase mixtures, Drumheller and Bedford [1] and
Bowen [12] utilized the entropy equation for the mixture as a whole, while
Dobran [14,15] used the single-phase entropy Eq. (27) to restrict the consti-
tutive assumption. Drew and Lahey [19] considered only some genmeral constitu-
tive principles for two-phase flows using the time-averaged model of Ishii
[4] and did not use the entropy equation to restrict the form of constitutive
assumption. As discussed in Section 2, an entropy equation for each phase
is consistent with all averaging approaches while the entropy equation for the
mixture as a whole does not appear to be too restrictive and the constitutive
equations based on it should then be more general.

In the remaining part of this section, certain results for constitutive
equations for a multiphase mixture of fluids from the studies in References
14 and 15 will be presented. For this purpose, it is convenient to eliminate
the heat generation rate F& in the entropy Eq. (27) by using the energy Eq.
(26) to obtain

. ~ \‘.’ -~ ‘_T ~r q .va — A —
oa(ﬁa+easa)+tr(TaVva)—9-9i—_g—P—+$ +0 % +8%50 >0,
“ (31)

where the Helmholtz potential ﬁa is defined as follows:

%, =8-70 % i (32)

Equation (31) together with Eqs. (23)-(26) were used by Dobran [14] to stud
constitutive equations for a dispersed multiphase fluid mixture with a sing{e
but nonuniform temperature and without the possibility of phase change, i.e.,

Those who disapprove this approach find

® =0and ¢ = 0. The constitutive assumption studied in Reference 14,
A 3 — ~ B
( TO‘.’ pCl’., MG.’ w » qu'.’ eC(, SCI'.’ g] - (33]
£00, V0, 04, Vog, D Wy - W, ¥ - V., vB-v -2 WV - V),

also ignores the memory effects but accounts for the nonuniform temperature

and densities; for heat conduction, ‘ﬂJ for density gradients, Vp_; for v%?-

cous effects, F.; for viscous drag, ; and for virtual mass efgects,

Note that in the notation of Eq. (33) egch consitutive variable of the phage

o, &=1, ..., Y, depends on all the other variables, 8 = 1,..., Y, in the

functional expression for f. Us1ng the principle of objectlvlty or the mater—

ial frame 1nd1ffer nce ? 14,15] +) must be replaced by and

where + L ), = i L ) afd L= Jb is the v§10c1ty Erad1gnt
E? be repl ced b v g 3] mgst appear in the frame in-

var?ant form gu

%‘ ). By substituting Eq. (33) into Eq. (31)
the following lé es¥abllshgd A

1. The equilibrium state of the multiphase mixture spgcified by the
conditions Vo=0 it DB=0, WB=0, VB- =0, &= =0, for B=1,
eer Yo

2. The restrictions on the equilibrium state coefficients in the linear-
ized constitutive equations.

The above procedure is long and it leads to the following linearized constitu-
tive equations:

S . aﬁa(e. Py) -
= ﬁate, Pyl R e e (34)
S=0 g =0 (35)
o o
Trﬂ-l 2 - TC(.[O’ ve =0, OBJ v08=° 3 DB =0) wﬁ 'w.Y =o’ VB == VY =°:
¥ N 3 ¥
Vg -V, 2W.( V-V =0] (36)
A Y_'l ~ ~ ¥y= 1 PR p-3
P52y Ve HBE L WiV, o E STl v, -V) (37)
B=1 B=1
A =T -1 )
MG=T‘&-TG—4BE 6 (We - W) (38)
T =7 3 L w 39
Ta =—TFa| + BEI[’\QB(U‘ DB)I + 2"'0(8 DBI + éil ¢a8 (WB -W, ) (39)
- OCTRVILIED T
q, =, Vo le g (Vg = V) BEI Vag (Vg -V )5, 5,0 U, , (40)
where the coefficients Yoo £ 2 and Vv depend on
© , Pyy seey ) These coe%%lclents a?e restrlc%ed gy tﬁg entropy E (31),

and for a two- ﬁhase fluid mixture, it is shown by Dobran [14,15] that the

35
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results are in accord with the available experimental data.

For a two-phase highly dispersed fluid mixture where the linear momentum
sppply for the mixture P = 0 , the angular momentum supply for the mixture

= O , the energy supply for the mixture €m = 0 and the entropy supply for
th¥ mixture §m = 0, it is shown by Dobran [15] that

A
1) M_ =0 and thus from Eq. (38) we have the result that the
stress tensor for phase o is symmetric, i.e.,

F T
- o a1
Tu Ta . 991 = O (41)
2) Using Eq. (41) in Eq. (39) the stress tensor for phase o thus becomes:
Ta = -Tral + )\w[tr Du) 5 » me Dot (42)

The stress tensor for phase a, T., is thus shown to be symmetric only in the
special case of disperse flow and it does not depend on the variables from the
other phase, ( W, - ). 1In their studies of two-phase flow constitutive
equations, Ishii t4] and Bataille and Kestin [6] assumed a priori the symmetry
of Tl, while Drew [20] invoked_the principle of phase separation in which the
bulk phase variables (such as & and § ) are allowed to depend only on thg
variables from the same phase. ~Although Drew's principle of phase separation
might be correct in special circumstances (cit. the result above expressed py
Eq. (42)), within the present theory, however, this principle remains qgestlon—
able since it is in conflict with Eqs. (38) - (40). In the time averaging
approach [4]: 1) the coefficient L =0 in Eq. (42); 2) no account is taken
in the theory for virtual mass effc%%s; and 3) the Dufour effect in the expres-
sion for the heat flux vector is associated with the concentration gradient and
not with the diffusion of phases as represented by Eq. (40) and also agreed
upon in the theory of single-phase multicomponent mixtures [10].

The Helmholtz potential in Eq. (34), &a = $a(0, 0 ), represents a
fundamental relation of the macro-macroscopic state with the assumptions which
Tead to the constitutive Eqs. (34) - (40). The knowledge of such a relation-
ship and the coefficients Y., & os & 0y @ oy A oy Mooy Koo § and v_, for
o, g =1, ., Y as functiofis O%BO, 8?, .g?, Eqsareu uff%cie%@ to clgge the
multiphase field Eqs. (23) - (27) when the conititutive Eqs. (37) - [4?) are
utilized. Unfortunately, this macro-macroscopic fundamental equation is not
known at the present time and this is where the holistic or continuum mechani-
¢s approach presented in the paper becomes inadequate. To get around this
problem, the constitutive assumption can be enlarged and additional transport

equations can be assumed [12,21].

From the above, it is clear that the linearized theory of constitutive
equations yields many results that are in accord with past modeling prac?ices
in two-phase flows, and it also gives more general results than are predicted
by these models. The fundamental problem thus remains: should there be a
meaningful physical reconciliation between the macroscopic and macrg-macro-
scopic states or should there exist additional transport equations . This
problem 1is, at the present time, the main stumbling block towards the con-
struction of a viable theory for multiphase flows.

4. SUMMARY AND CONCLUSIONS

The theory of multiphase flows is in an infancy of development. While a

a7

general accord exists on the form of conservation and balance equations for
multiphase flows, different averaging procedures lead to the definition of
different multiphase flow variables which are still contraversial. Averaging
over time and space domains gives rise to different models and especially mani-
fests itself in the turbulent field equations. The volume-averaged multiphase
field equations appear to be the most desirable to motivate the construction of
a physically meaningful and mathematically rigorous set of conservation and
balance equations. The field equations based on this approach were presented
in the paper where it is also shown that the averaging or reductionistic
approach utilized to construct conservation, balance and constitutive equations
for multiphase mixtures needs reconciliations between two different levels of
description: the macroscopic and macro-macroscopic levels. To avoid this,

a holistic or continuum mechanics approach is more desirable since it yields

a more consistent theory.

The results for constitutive equations, using the continuum mechanics
approach and discussed in the paper, should, through fundamental experiments,
lead to better modeling practices. Other procedures such as flow regime
modeling will continue to provide special forms of the constitutive equations
and, therefore, the verification of various theoretical models. The approach,
based on irreversible thermodynamics, lacks the appropriate macro-macroscopic
fundamental equation and, for this reason, it has not to date found a wide
support. Clearly, while considerable progress has been made in the formula-
tion of conservation, balance and constitutive equations for multiphase flows,
much more work remains to be done in the future through both analysis and
fundamental experiments.
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APPENDIX A

The conservation and balance equations for a multiphase mixture are

obtained by summing up each of the Eqs. (23) - (27) and by utilizing Eq. (22),

i.e.

Mass ;-) + DV‘V = (A.1)

. A

Linear Momentum: pV= V-T +ob + [:l]_n (A.2)
Y

Angular Momentum: M = T - TT (A.3)
. A

Energy: PpE = tr( TTVV) -Veq s or+ (sm -v.p) (A.4)

1976, Vol. 29,

1975.

Y Q. _ Yo, ¥
Entropy: pos + V-1 é&‘, + pa’é'aua)- r=22 ., E'.‘m >0
a=1 Oa oFl Oot

where the compatibility conditions between the phasic Egs.

mixture Eqs. (A.1) - (A.5) are expressed by the following relations:

: e
E =0
a=1¢%
T-1 (T,
=L ‘9 l.la®l.l)
a=1
L
pb =TI p b
a o
a=1
A B Y A
P, =i (e u +P)
a=1
Moo= iR
=L
moC e
Y L,
pe 2 (EE. .+ 1B ‘u)
a=] O e
b

§ oL (U U U]

Y — -~
ps = L p_ s
o] OO
-~ —Y -3
Sm =k sOl
a=1

A
A
The mixture source terms M, and § account for two effects [7]:
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(A.5)

(23) - (27) and

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

for the interfacial forces %etween tﬂe phases in the averaging volume V; and

2) for the covariance effect or the nonlocal material response.

Notice also

that Eqs. (23) - (27) and (A.1) - (A.5) can be time-averaged to obtain turbu-

lent field equations.



