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Abstract

A mixing length turbulence model is used to study the distribution of
liquid and gas in the core of an annular two~phase flow. The gas volumetric
fraction distributions were obtained for different regions of the core and then
combined to obtain the distribution for the entire region. In vertical upflow a
peak in the volumetric fraction is predicted close to the liquid film interface
for some range of flow parameters, whereas in downflow the peak i{s predicted at
the pipe centerline. Larger interfacial shear stresses have the effect of
increasing the gas phase concentration close to the liquid film interface, and
larger values of the average void fraction produce more uniform profiles in
both upflow and downflow. By comparing the predictions of the model with the
upflow and downflow air-water data of different diameter tubes, the turbulence
parameters are explicitly identified and it is shown that the model predicts
well the data over a wide range of liquid and gas flow=rates.

1. INTRODUCTION

An annular two-phase flow pattern occurs widely in many practical
situations and as illustrated in Fig. 1 it consists of a liquid film adjacent
to the tube wall and of a gas core region. The interfacial region between the
film and gas core is usually not smooth, but instead it may be covered by a
complex system of waves which at sufficiently high gas flow~rates break up and
some of the liquid becomes entrained in the gas core in the form of liquid
droplets, Sinece the amount of liquid flowing in the core can be considerable,
it is reasonable to expect that it can significantly affect the total flow
Field distribution and evolution. By its very nature, a practical two~phase
annular flow pattern is turbulent and in a hydrodynamic nonequilibrium, since
it usually requires a large distance in the tube before the local liquid
entrainment rate from the film balances the local liquid deposition rate onto
the 1iquid film ([1], chapter 2). Heat and mass transfer further complicate the
Situation and may have a significant effect on the distribution of 1liguid in

the film, interfacial transfer, and on the distribution of liquid and gas in
the core region.

A great deal of effort has been devoted in the past towards the
Understanding of an annular two-phase flow pattern [1~3]. Most of these studies
have been concerned, however, with the global aspects of the flow which require
relatively simple instrumentation to gather data for the justification of
broposed analytical models. Simple models turn out to be unsatisfactory,
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especially for nonequilibrium flows, and a poasible means to improve global
models is through the studies of local flow characteristics such as the
distribution of phases in the core region. The distribution of liquid and gas
phases in the core is inherently coupled with the state of the liquid film,
direction of the gravity field vector with respect to the flow direction,
relative motion of the film and core, external driving force of the flow
(pressure gradient), ete. Gill et al. (4,5] experimentally studied the
distribution of liquid droplets in the core of an upflowing annular flow and
Pound that the gas volumetric fraction has nearly a flat profile in most of the
core region and a very steep gradlent near the liquid Pilm interface for a wide
range of liquid and gas flow-rates. Near this interface, however, the data from
a probe inserted into the flow need a careful interpretation, since the probe
may be peaking up liquid from the £film surface waves instead from the droplets.
The interfacial region of the film and core needs, therefore, to be carefully
modeled.

The flow of liquid droplets in the core of an annular flow has some
similarity with the dispersed two-phase flows without the liquid film which is
easier to study experimentally and to obtain two~phase flow turbulence
information that may be used to construct models of annular flows. For this
reason, a brief summary of the low quality experimental data of nonannular
two-phase flows is of relevance,

Serizawa, Kataoka and Michiyoshi [6] studied the phase distribution and
turbulence characteristics of an- upflowing bubbly flow and observed the
existence of a bubbly layer close to the tube wall at low qualities, whereas at
higher qualities the bubbly flow changed to slug flow with a void fraction
(volumetric fraction of the gas phase) peak appearing at the center of the
tube. In cocurrent downflow, the data of Oshinowo and Charles [7] show no
bubble layer close to the tube wall, but instead they show a coring effect
where bubbles concentrate near the center of the pipe. Ibragimov et al. [8]
also observed a bubbly layer close to the tube wall in upflow and gas coring in
downflow. The data of [6] show that the turbulent stress of the gaseous phasge
is proportional to the liquid phase, and that the two-phase flow turbulence is
nearly isotropic. Lance and Bataille [9] observed that the injection of bubbles
into an initially quasi~isctropic single~phase turbulent flow field does not
change the isotropy of the two-phase flow at low qualities in a vertical
rectangular duct. Moreover, the longitudinal turbulent intensity and turbulent
kinetic energy increased with an increase of the void fraction. The upflow data
of Theofanous and Sullivan [10] show: (1) a bubbly layer near the wall, (2) a
substantially isotropic two~phase flow field, and (3) that the bubbles produce
an increase in the axial turbulent {intensity of the flow. Based on the
experimental data of low quality bubbly flows, Drew and Lahey [11] utilized a
mixing length model for the turbulent two-phase flow field and qualitatively
predicted the experimental vold fraction distribution.

Two=phase laminar flows with the dispersed phase being denser than the
continuous phase were experimentally investigated for both upf'low and downflow
by Jeffrey and Pearson [12] who showed that the denser phase migrates to the
tube wall for the downward flow and to the axis of the tube for the upward
flow. This study, together with the studies invelving bubbly flows, illustrates
an important conclusion that the gas volumetric fraction has a similar
distribution in both upflow and downflow irrespective of whether a lighter or a
heavier phase is dispersed in a continuous phase, provided that the gas phase
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{s being interpreted as the lightest phase in the mixture. Although the flow in
the core region of an annular flow is similar to the two-phase flow situation
where the denser phase 1s distributed in a continuous lighter phase, no data

appear to exist for this region on the detailed distribution of the gas
yvolumetric fraction,

From the above, it is evident that the core region of an annular two~phase
flow needs a more detalled study with the objectives in this paper being: (1)
to construct a turbulence model for the core and to use this model to determine
the distribution of liquid and gas, and (2) to use the core void fraction model
to study the distribution of flow propertied in annular flows and test the
model predictions with data of vertical upflow and downflow to ascertain the
range of validity of the basie turbulence assumptions.

2, TURBULENT FIELD EQUATIONS FOR AN ISOTHERMAL TWO~PHASE FLOW

A study of turbulent flow characteristics of the core region of an annular
flow requires a set of turbulent field equations. In this paper this set of
equations will be obtained by performing time averaging of the volume-averaged
two~phase flow equations developed by Dobran [13,14]. For isothermal and no
phase change situations, the conservation of mass and balance of momentum
equations of phase Kk, where k=L denctes the liquid phase and k=G denotes the
gas phase, are as follows:

k -
st WV, = 0 (2.1)
EEEZE + Yoo VLV v D

at PV Yy = VTt P8 Py (2.2)

where ;k is the partial density of phase k and is defined by

P = &Py @ tag . 1 (2.3)

In the above equations a, is the volumetr fraction the den

atress tensor, p. the entum 1nteractio:F. and V Eh: velocf:ysé:y;hggeti?
The gravity vector is denoted by g and time by t. Thé volume averaging approach
assigns at each point in space and time several mixture properties similar to
the modeling of single~phase multicomponent mixtures. Dobran [13, 15] performed
4 linearized analysis of the constitutive equations and argued that two-phase
flows with low volumetric fractions of fhe dispersed phase have constitutive

equa
rgrm:ions for the stress tensor ‘l'k and momentum interaction P, of the following

T ==

k ® O PL Akk[trbk]l + 2, Dy (2.4)
LI

p, = -akleL-vG] - akL[anvG} ; P, * Py O (2.5)

b1

where Dk is the symmetric part of the velocity gradient, Pk is the pressure, V

e L

1
This may fnclude the nonlocal effects [14].
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and V. are accelerations of liquid and gas, and u are viscosity
coerfigienta which depend on temperature and densf*&es p #ﬁ P E, .20 and
<0 are drag coefficients, and A 20 and A, S0 are virtual mass coefﬂfﬁianta.

g
Ightha following, the form of theé%‘coerficf%hts is not important, since {(2.4)
will be rewritten as follows

T, Pl o

where T accounts for viscous contributions due to Dk'

(2.6)

To determine the turbulent counterpart of (2.1) and (2.2) we can proceed
in the usual way by time averaging these equations over a time interval T that
is larger that the time scale of turbulent FPluctuations while smaller than the
time interval associated with the transient behavior of flow. A time average of
a physical varlable A, which is a function of space coordinate x and time t,

will be defined as rolows:

T
5o =4 j

A(x,t+1) dt (2.7)
0

and used to reduce (2,1) and (2.2) after time averaging. To simplify the
resulting set of time-averaged equations it will be assumed that both phaasa
can be represented by the quasi-steady densities L and P and pressures ,
i.8.

T L 2.8
pL E pL . pG pG ¢ )
&7 =T
PL = PG &P (2.9)

Denoting by v, the turbulent velocity fluctuations and by ¢k the turbulent
volumetrie fraction fluctuations we have

T
v~ ik * v (2.10)

-.'1' ;

G, = o * (2.11)

and note that ;T-O and $T-0 by definiticn. Performing time averaging of (2.1)

and (2.2) and ﬁaing (2.?)-(2.11) gives the time~averaged mass and momentum
equations, i.e.

oy * v.pk[;§i§+$§) -0 (2.12)
T O, Jo MeTel _ _o=Toy . g (=T=T,=T=T I |
5o (BT ) ¢ Ven g N - ~V(EP) V.lax ra0 ) + o8 B (203

where ?T denotes the viscous contributions of the stress tensor, whereas ET
denotes " the turbulent contributions and includes velocity~velocity anﬁ
velocity~velocity-volumetric fraction correlations whose forms will not be

2Th!\s assumption neglects the flow redistribution due to the pressure
fluctuations which in single-phase flow can be significant.

geparately modeled in the paper and thus will not be listed here.

The distribution of phases in the core re

glon of an annular flow will be
studied by the further assumptions of: (1) mean steady flow, (2) fully=~
developed rlgy excepl, for_&ha pressure gradient, and (3) axisymmetric flow. By

defining t =t , 0,=0 , o=a _, and utilizing the abov
e assu
equation (E-lg) 1& réuced to sumptions the momentum

Radial momentum equations for the gas and liquid phases:

g == G%E + %F[uu

3

g, re) * 7ol9g =90 4y (2.14)
w ~[1=a)2P - 1

0 [1 ﬂ]ar + %[[1 G)GL,PP] * FI[l‘ﬁ][GL.rr“GG"w]] (2.15)

Axial momentum equations for the gas and liquid phases:

~adh 4 14
%z ' F dr[rc{tc,rz*oﬁ,rz]] = apgB 0088 + pg (2.16)

a s{f=a)iE & Liloronia
0= <lr=alf; * ; Glrlt n”‘L.rz”l.,rz” = (1~a)p, g coso ~ Pg (2.17)

In the above equations r is the radial, z is the axial a

coordinate, whereas cosé=1 for upflow and ~1 for duwnrlow.nitwc;: zzan::::u:::i
equations (2.14)~(2~17) are similar to those used to study the phase
distribution in a bubbly two-phase flow [11,16], although the interpretation of
the averaged quantities is different since in these works they are based on the
time~averaged two-phase flow model [17]. These difference gives rise to a
greater number of turbulent correlations in (2.12) and (2.13) than in the model
of [17] which for the present paper 1s not aignificant, since these
correlations will not be separately modeled (see below), For further discussion
on the two-phase flow equations, the reader is referred to Dobran [18].

3. TURBULENCE MODELING AND VOID FRACTION DISTRIBUTION IN THE CORE

The interfacfal region between the liquid film and core region
of
::2?1:: :lou i? usually covered by a complex system of waves wnoa: atructuﬁg
it zEPre t:n this paper. Instead, it will be assumed that the core region
B dlihes : me=-averaged radius Ri as shown in Fig. 1, and that the 1liquid
- e in the form of droplets. The average interface location
rresponds to that of a cylinder of radius Ri.

3.1 _Turbulence Model of the Core Region

The turbulent st ses in ( Iu’ (
) may mo (
ul res 2= ={(2=17 he deled: 1 ) b)" an
aaauﬂlpl’-ioli that relates the liquld phase turbulence character istios to the gas

phase turbulence
turbulence. characteristics, and (2) by an assumption of the gas phase

canceg:iatzehavior of 1liquid droplets in the turbulent gas depends on the
el oi of droplets and on the size of droplets relative to the scale of
+ At very low droplet coneentrations we can expect that the droplet



interference with other droplets {8 minimal and may assume that each droplet
can be regarded as being alone in the gas. When the droplet concentration is
high, they interact directly through collisions and indirectly through the
effect of change of the flow field created by the droplets themselves. The size
of droplets is also an important variable, since it determines the relaxation
time or the characteristic response time of droplets due to the change of their
environment. Large droplets in comparison with the secale of turbulence will
experience a flow resistance and should follow only large=scale turbulent
motions, whereas the small droplets in comparison with the smallest turbulent
length scale or Kolmogoroff's micro-scale length will tend to follow all
turbulent fluctuations of the gas. Hinze [19] estimated the response time of a
particle in a turbulent fluld and concluded that, for the situation when the
density of the particle is much larger than that of the fluid, the partiecle
will follow the fluid if its size is an order of magnitude smaller than the
Kolmogoroff's micro=scale length. The experiments [20] involving very dilute
suspensions of solid particles in air flowing in a vertical pipe indicate that
the Kolmogoroff's length scale 4is about 100pm, whereas an {inveatigation
involving a vertical annular-mist flow [21] indicates that the most probable
and average droplet diameters are, respectively, 30 and ¥lum.

From the above, it may be assumed that the relationship between the liquid
phase and gas phase turbulence can be modeled as follows:

%4y " €44 9,44 ~ qu,iJ (3.1)
where q=p /’G and c1 is presumably a constant and of order one. Equation (3.1)
can be \rf&\md as representing an equality of 1liquid phase and gas phase time
average of the product of radial and axial velocity fluctuations if C.=1. A
value of C,<1 would correspond to the liquid phase turbulent fluct.uatilma of
lowar amplltude than the gas phase, whereas to the value of C,>) would
correspond the opposite conclusion. Away from the liquid film interface the
assumption expressed by (3.1) is reasonable as long as the droplets are
sufficiently small and their concentration low (see above), since then they
will follow the turbulent fluctuations of the gas phase, Close to the liquid
film interface, however, this assumption may break down due to their larger
concentration §-han in the core and because of the presence of multiple scales
of turbulence.

To model the gas phase turbulence, a mixing-length model will be employed
for the reasons that this model does a credible Job in modeling the
single~phase turbulent flows and bubbly two~phase flows [11]. Near the tube
centerline, however, this model will have to be modified, for otherwise it
would predict the unphysical result that the turbulent stress o =0, A
simpler model like the eddy=-viscosity would predict that 9. pp0 v -&’ﬁicn is
in contradiction with the bubbly flow data [10]. More cdmﬁlié%téﬁ two~phase
flow turbulence modeling is not warranted until simpler models are explored,
and due to the very complicated nature of the two~phase flows such modeling may
not prove to be very practical.

The turbulent shear stress of the gas phase is, therefore, modeled as

301039 to the 1liquid rilm interface a number of length scales can be
identified, such as the pipe radius, 1liquid film thickness, time~averaged
droplet diameter, and average thickness of the interfacial waves.

follows:
du. du
= * L |emB] il
%,rz\") = 9 pylr) + ogtg 15l T (3.2)
where

Lo = kglRi=r) (3.3)
is the mixing length and k. is assumed to be a conatant, The

in (3.2) is added for twd' reasons: (1) to prevent an 1ncon?1:zrensc=§rm:ft:0bgé
assumption (3.1) at the liquid film interface where 2 =0 and where o (Ri
may represent the largest contribution to the 1ntar-faciil shear, and [E’}rgloaa
to the 1liquid film interface it 1is expected that the lnterru;!al shear will
contribute to the total turbulent energy of the gas phase. Away from the
interface, lbur. not close to the centerline of the tube, the effect of the
interface should diminish and the mixing length theory should apply. A possible
way of constructing an approximation of g (which involves an interfacial

turbulent length scale) with the above pro 133‘1 i
Pt i p gé €3 138 presented in the appendix

e oy
%,n1/") ~ 96, g (RE)(F7) (3.4

Th i
e axial turbulent stresa uG.zz Will be modeled by the following equation:

0

G, rz
; = = lZ
6,22 l(‘? ‘ GG.zaoir] (3.5)
G
2
where K. is assumed to be constant and where o (
[ rFom becoming equal to zero at r=0 : 3 r% ol il -
tﬁézgrder R AL « The valﬁb ki G is expected to be on

3.2 Distribution of the Gas Volumetric Fraction in the Core

The equations governing the distribution of the gas volumetric fraction i
;trl:mao:: region can be obtained from the momentum equationa (2.14)=(2.17) an:
ail tign turbulence modeling equations (3.1)~(3.5) with the additional
" P s regarding the nature of characteristic length scales in different

glons of the core. By eliminating the pressure gradient between equations

(2.14) and (2,15) ana usin
' g (3.1) results in
radial void fraction distribution: s Climinpiogunsio Kir i

< o _(1=a)+Qu 1 duG rr . %6,.rr %
ar = = - L} + 1 :W‘
(=) (-9 "5 — o P o (3.6)

which ecan be integrated to yield:

Q

1=g (1‘9) Ir‘ a -0
-C - G,rr °G
P e (150 Jgi—#—u;;;ﬂ dr'] 3.7
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where C is the constant of integration. Equation (3.7) shows that the void
fraction distribution depends on the radial turbulent stress, o, .. and on the
anisotropy of the gas-phase turbulence expressed by the in ei?al. For an
ysotropic turbulent flow, o =0 =0 . While no turbulence data appear to
exist for an annular flow tg'ﬁﬁdgg’fﬁe Qeﬁﬁee of anisotropy in the core, it can
be noted that bubbly two-phase flow data [9,10] and particle-air data [20] show
that the two-phase flow is more isotropic than a aingle~phase anisotropic flow.
By extrapolation it may be assumed, therefore, that a two-phase droplet flow is

nearly isotropic. Indeed, by defining

o r 9. -
lr) = S2% gpl [ Gadh_GarT 4] (3.8)
G,rr Ry G,rr

the flow isotropy implies that flr)=1. Combining (3.7) and (3.8) gives

Q 1/(1~Q)
fir) [AE) (3.9)

0G.zz h al

The laminar shear stress, Torz! is given by the usual equation
L]

duG
TG.rz - uG-EF- (3:10)

and assuming that du./dr<0, we may eliminate the veloeity gradient between
(3.2) and (3.10) to obtain:

H.K o
Y 11 N G.Riy11/2
Torz = I oo 90,2276, 220" 2 )] (3.11)
G 0 ¢
2
S, rz " KG[UG.zz °G.zzo] (3.12)

Adding the axial components of the momentum equation, (2.16) and (2.17), and
utilizing (3.1), (3.9), (3.11) and (3.12) gives

1/7(1=Q)

)@
erilas(1maQ) (L52) " elr)

)+

[wr(1=a)

Y
n'a
=

"L, rz =%,220
neK y@.1701=Q) 9% riy 172 5
rasd{L (o2l tlr)ma, . t—22)p ]+ &

¢ ‘o 5

[apgt(1=a)p, Jg cose = 0 (3.13)

1
aC G,220

Equation (3.13) is the basic differential equation for the determination
of void fraction a in the core region of an,annular flow, The distribution of a
depends on the turbulence characteristics K, 4, L t(r), o and 6, ooy ON
the liquid and gas fluid properties p,, U, P Sha Wias on "¢HE extergaf flow
driving force 3P/3z, and on the flow dirébtié%. Sincg detailed experimental
data of annular flows are lacking for the determination of these turbulence
parameters, in what follows we will utilize the available information from
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annular and nonannular flows for the determination of the void fraction by
geeking solutions in different regions of the core. The basic approach is to
divide the core region into three regions as shown in Fig. 1. In Region I,
which ia close to the liquid film interface, a steep vold fraction gradient
exists, whereas in Region II the void fraction is assumed to be constant (as
attested by the data [4,5]). In Region III the void fraction profile adjusts
{tself to the local turbulence characteristics,

3.2.1 Intermediate Core Region = Region II In the intermediate region of the
core, between the liquid film interface region and the central region of the
tube, the wvoid fraction appears to reach a uniform profile as the data [U~6]
show. Adding (2.16) and (2.17) and then integrating from r=0 to r=Ri (where
a=0) yields

T TR LI 1" A T - [,-:,,E} Jr:;, o

Defining the core~averaged void fraction <a> by the equation A
[Ri

CERE 5T (3.15)

and using this equation in (3.14) results in an expression for the pressure
gradient, i.e.

ap 2
e = EEITL.rz[Ri] + aL'rz[Ri]] - o8 cos8 (1=<a>) (3.16)

1

where it is assumed that p_./p <1, For an air-water mixture at an atmospheric

pressure p./p, =10 ° and we %a}'be justified in making this assumption for many
two~phase Flo A,

To determine a uniform distribution of void fraction a_ in Region II, we
will invoke the following assumptions: °

1. Viscous stresses can be neglected in comparison with the turbulent stresses,
pressure gradient, and gravitational force.

2. @1,
- {(T_G)Q]1f(1~a)- il lljxx(1-n3 oG, ppR1)
aC 1=a *C o 1-a
: "(.‘.,zz‘:-[")':'““c,zz[‘r'J

The third assumption above can be justified b
y using the second assumption and
evaluating C in (3.8) and (3.9) at r=Ri. The fourth assumption implies that the

contribution of o (r) to o r] is negligible in R
(3.13) 1is, therafo?é?z?educed toG'zz FERE 2 Maaton I0s Mumation
[1+{ ao ]KgQUG,Pr[RiJ 1 9—{rr{r)] + .J_ 3P + [1- B J
_1-¢AY5 G r ar o8 37 a Bo cosfl = 0 (3.17)
33



where Bo-1-pGJpL is the Buoyancy number, In (3,17) it is clear that we must
have
12 (recr)) = constant (3.18)
r dr
This condition is somewhat justified for low quality bubbly flows by examining
the single~phase anisotropic pipe flow data of Laufer [22]. In the core region
of an annular flow, however, no data exist to justify (3.18), but due to the
similarity between droplet, bubbly and particulate flows it may be assumed that
(3.18) is a valid approximation. From (3.18) it thus follows that

2
2r R, [ R

constant = ﬁ—é (1~ ﬁl?l]f[1 - —%] (3.19)
2 22 32

where -r(nT) and f_=f(R,), and R, and R, are the boundary radii of Region II
as show% in Fig. 1. %ﬁJbagituting 33.18} éhd (3.19) in (3.17), eliminating the
pressure adient using (3.16) and utilizing the assumption that in Region I
£lr)=r(R1 -r[na) and R.=Ri (see below), we obtain

2
2
a. - 654 21“;;‘[311 + ZULRIZ(Ril-El l;l - gllft1 - E%J (3.20)
[5] an cost phg cos > > 2 Rg

where use is made of (3.1), (3.5) and (3.8). Since the interfacial shear stresas
7] is defined as

Ty [‘L,rzfﬁi}*“u,rziﬂi)] (3.21)

equation (3.20) is reduced to

2

e A 2aL_rz{nil _ f‘R1JI[1 -.EL] g
(] p, gR1 cos®  p, gRi cosé f.R 2
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from where it can be cbserved that for a turbulent liquid film a_=<a> for
f.=order(f£,) and R1<<R2. For the upflow case cos@=1 and a_ < <a», whereas for
downflow cosf=-1 and a_ > <a*, The assumption that ? =order|f ] may be
Jjustified from the singf%-phase anisotropic pipe flow dat; [22] an% a bubbly
two~phase flow analysis [16]. The second assumption of R1<<R2 can be justified

by examining the data of Gill et al. [4].

3.2.2 Interfacjal Core Region = Region I In region I the void fraction changes
from the value of zero at r=Ri to a constant value a_ in Reglon II, and as the
data [4] indicate we will assume that this change occlirs in a thin reglon close
to the liquid film interface, Moreover, it will also be assumed that

1. 0 [r]((oc'zz(r]. and 7, is negligible in comparison with o, rz’

G,zz0 rz
2. @,
5 E(1_“)Q]1/(1+Q)* 0 pplRL)
: al 1-a :

4, flr)=f(Ri) and r=Ri, giving &

{rr(r)]-fé%ll .

4
dr
5, Validity of (3.4).

6. Balance between the void fraction gradient, da/dr, and the terms in (3.13)
involving pressure gradient and gravity (as may be justified a posteriori).

With the above assumptions, 4§t follows that the scaling of the radial
coordinate according to

g -2 L (3.23)

in (3.13) vields:
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By defining the parameters
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where N, is the two-phase Grashof number representing the ratio of buoyaney to
viscous™ forces, whereas the parameter 7 represents the combined effect of
turbulence intensity, buoyancy and viscous forces. Eliminating in (3.25) the
pressure gradient by using (3.17) gives a differential equation for a, 1.e.

A Y4 ~1 =1 2 f2 o i

[ﬁ?] nlal1=a) ~m°[1-u°} ]+ -303 {17a)" % Bola-a_)cose
da
I (3.28)

(& n(1=a) + 2a'"#(120)"3/%(3420)




where we assumed that: (1) the term in square brackets in (2.25) when
multiplied by A/Ri is much smaller than the remaining terms, and (2) the film
thickness is small compared_go the tube ragius. For an air-water mixture §t
atmospheric pressure . =2x10 Kg/m=3, p -lg2 Kg/m”, g=10,m/s and p.=1 Kg/m™,
assuning that K1, a8d using for Ri=2K10 °m and for Kof(Ri)o. f[Ri)e=t, a
value o£310 N/m° (see [23,24], for example, for typical Qaluea}f we find that
A/Ri=10 ° and may be justified in our assumptions. The solution of (3.28) 1s
discussed in the next section where for upflow the void fraction may possess a
peak in Region I, whereas for downflow no such peak is predicted.

3.2.2 Central Core Region =~ Region III In Region III it is reasonable to assume
the following:

1. Viscous stresses are much smaller than the turbulent stresses,

2. a+(1-a)a=(1~a)q or @>72= .

(1-a Q 1/(1~Q) 1
3. == ) - T:Eus.rrlﬂi] as in Regions I and II.
i, [D], i.e., a constant term in the Taylor series expansion of

] L300 bl

G.zzoi } bl
O, 220" aB8BE°ra0.
5, f{r)=constant=£(0).

6. Balance in (3.13) between the void fraction gradient and terms involving the
axial pressure gradient and gravity.

Using assumptions 3 and 5 and equation (3.9) gives

op . (r) - -
G,zz' 2 _ elr) 1fago] - 113L01 (3.29)

uG,zz ] T=a
and from (3.5) we obtain

00‘22[0) - uG,zzo[‘o] (3.30)
Utilizing assumptions 1, 2 and 3, (3.13) is reduced to
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Furthermore, from (3.9), (3.29), (3.30) and assumption U it follows that
o5, R1)E(r) = (1=a)og . (r) « [1=a(0)]ug ,,(0) = [1=al0)]og ., (0) (3.32)

which upon the substitution into (3.31) and elimination of pressure gradient by
means of (3.17)=(3.19) with fa-flﬂi] and Ra-ﬂi. gives
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pefining a scaling of the radial coordinate according to
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and using assumption 6 in this equation gives:
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Since Region III can be defined as a region with &/Ri<<1, we @
¥ an
(3.36) the void fraction distribution equation, i.e. obiadn Zfow

d
a??[l-a] ~ ¥(1~a) cose = 1~al0) = Y[1-u°] coso (3.37)

from where an integration yields
1 u[OJ-uo
Q=g = = - ——
= %G exp[Y cose] Tooaet (3.38)

Wwith C, being the constant of integration. For

» upflow cosf=1 and since it s
requirdd that 1imit a =a_, a8 Y+, this gives C,=0. A8 Y+0 at fixed 6, it is
also required that a(O}nao for a to be bounded, giving thus

alY) = a, for upflow (3.39)

For downflow cos@=~1 and limit
a=a_, as Y»x, is satisfied without restri
Cz. However, as Y+0 it follows thatocz-a[0]~é;. and therefore e

u[O]—u
. Q bt
aly) . ¥ —T—[1-e ] for downflow (3.40)
The in
il teresting properties of the vold fraction distribution equation for

flow are the gas coring effect and apparent arbitrariness of a(0). This is

‘discussed further in the following section.

In summary, the void fraction distribution in the core region of an
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annular flow is expressed by (3.28) in Region 1, by (3.22) in Region II, and by
(3.38) in Region III, with the properties of these equations discussed in the
following section.

4, DISCUSSION OF THE VOID FRACTION PROFILES

4.1 Vertical Upflow = cosfé=1

The vold fraction distribution in upflow determined from (3.22), (3.28)
and (3.38 is qualitatively illustrated in Fig. 2. The dot~dashed curve in this
figure represents the solution of the equation

IR\ J o VU TR 2 320, Y2 g (o ) o %
lﬂil nlal1=a) “0[1 u0] [ EEu (1=a) ol « uo] 0 (4.1)

which is obtained by setting da/dg=0 in (3.28). In finding the physical
solution for the void fraction distribution with fixed values of the parameters
A/Ri, n, Bo and a_, it is first noted that (3.28) has an infinite number of
solutions which p&%a through the singular point at a=0 and reRi (five such
solutions are sketched in the rigure). Since the void fraction determined from
(3.28) and (3.39) must be compatible with the Region II solution, it is evident
that there s only one physical solution which satisfies (3.22), (3.28) and
(3.39), simultaneously. For a turbulent 1jquid film, equation (3.22) gives
a_=<a>, and since for a high quality flow <a>=0.95~1, the analysis predicts a
véry steep gradient of a in Reglon I or in the region close to the liquid film
interface.

The upward annular flow data of Gill et al. [4] give a_~0.998 and, indeed,
show a very steep void fraction gradient close to thé llquid film, but
unfortunately their measurements were unable to resolve this gradient in
sufficient detail to warrant a detalled comparison with the present analysis.
The presence of a physical peak in the vold fraction profile close to the
1iquid film cannot be deduced from these data nor it is being necessarily
predicted by the analysis at high average void fractions as iluustrated in
Figs. 3 and 4, The data [12] pertaining to an upward flow of a dense phase
which is dispersed in a lighter continuous phase in a vertical tube show that
the lighter phase tends to concentrate close to the tube wall and, therefore,
may be used as a Justification of the present theoretical prediction of the
void fraction peak close to the liquid film interface. It should be noted,
however, that these data pertain to laminar flow and that their use in
validating the present prediction may not be completely appropriate.

The void fraction distribution as a function of the normalized radial
coordinate, r/Ri, determined from (3.22), (3.28) and (3.39), depends on the
paramatgis A/Ri, n, Bo and <a>, and it is is shown in Figs. 3 and 4. In Fig. 3
A/Ri=10 7, whereas in Fig. U4 n=10", with the results being generated with
a =<a> and Bo=0,999.

The effect of increasing the parameter n at constant <a>, Bo and A/R1 is:
(1) to decrease the gas phase concentration close to the liquid film interface
at low <a> only, and (2) to flatten the void fraction profile in the core as
may be seen in Fig. 3. The variation of the parameter A/Ri (or interfacial
shear stress as may be seen from (3.34)), at constant <a> and n, is 1llustrated
in Fig. Y from where it may be concluded that an increase in the shear stress
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Fig. 2 Qualitative sclution properties of the void

fraction distribution in upflow for Fixed A/RI,
n and Bo.
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at the liquid film interface produces flatter void fraction profiles., Higher
values of the average gas phase concentrations, <a>, have the effect of
producing a more uniform void fraction distribution in the core, and at very
high values of <a> no void fraction peak is predicted close to the film
interface. As noted above, these results are also consistent with data [4,8].
The variation of the buoyancy number Bo has a negligible effect on the void
fraction distribution at high values of this parameter for which the model
applies.

4,2 Vertical Downflow = cosf==~]

For the vertical downflow, equation (3.28) does not predict a peak in the
void fraction profile close to the 1liquid film interface; instead, the
prediction of a peak or coring effect comes from the Region III solution or
equation (3.38) (or (3.40)). As noted earlier, al0) in (3.40) is arbitrary,
with (3.28) having only one solution and implying that it must be chosen in
such a way that the solution expressed by (3.22) is also satisfied. This is
qualitatively shown in Fig. 5.

The void fraction distributions in the core are depicted in Figs. 6 and 7
to illustrate the effect of parameters <a>, A/Ri and n. In generating the
results in these figures the void fraction distribution in Region III is
assumed to correspond to a, as in Region II, and «_ is determined such that the
profile produces the given value of <a>, in order to eliminate the modeling
difficulties with additional variables ufO] and s [0]. The buoyancy number
is taken as Bo=0.999. Contrary to some situations b¥ the vertical upflow, the
effect of increasing the parameter n at constant <a> and A/Ri i{s to increase
the gas phase concentration close to the liquid film interface and to flatten
the void fraction profile in the core as depicted in Fig. 6. At constant <a>
and n, however, larger values of A/Ri (or larger interfacial shear stresses)
produce more uniform void fraction profiles in the core as in the upflow
aituation. These results are also consistent with the downflow data [8], and
the buoyancy number has a negligible effect on the void fraction distribution.

The void fraction peak at the pipe centerline or the coring effect is
shown qualitatively in Fig. 5 and can be quantitatively determined by selecting
the curve which produces a given <a>. Although no data exist to substantiate
the coring effect in annular flow, this effect is real for flows without the
liquid rilm and it has been shown to occur by the lighter phase. In bubbly
flows this is confirmed by the data of [7,8], whereas in flows where the

d;slfar'?ed phase is denser than the continuous phase it is confirmed by the data
of [12].

5. DISTRIBUTION OF LIQUID AND GAS FLOW PROPERTIES

The void fraction distribution equation expressed by (3.28) will be used
in this section to study the distribution of liquid and gas flow properties in
an annular dispersed flow, The void fraction in the intermediate and central
core regions will be assumed to be equal to a_=constant, for both upflow and
downflow situations. The interfacial shear sfress 1, can be obtained from
(3.21) by using (3.1) and by assuming that the liquid viscous shear stress is

negligible in comparison with the turbulent stress at the 1liquid film
interface, i.e.
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5.1 Gas and Liquid Veloecity Distributions in the Core

Adding the axial components of the momentum equation (2,16) and (2.17)
results in the following expression:

B 2- ¥ % EF[ru[‘G.rz+°ﬁ.rz]*r(1‘"J[TL.rz'“L.rz]] - [“pc*[1h°J°L1 088

(5.2)

and an integration of this equation from r=0 to r>Ri and noting that a(rzRi)=0
results in

fr>ni
,ra*UL,rz] - g cos8 s [qu+[1-a]pL}r dr (5.3)

where 3P/3z is an r=-direction average axial pressure gradient. Denoting by T,
the total shear stress in the liquid film, i.e.

g, = [GL.rz+TL,er (5.4

and using the definition of the core average void fraction equation (3.1%),
equation (5.3) is reduced to

2
ar r _ Ri
T - -[5; * P8 aosB}E + [pL pG]<a>§;—g 008l (5.5)

from which we may obtain the wall shear stress, P T (r=R), and the interfacial
shear stress, t =1, (r=Ri). Hence:

i L
ap R R12
T ‘[52 t o8 cose]é + [ph-pu]<a>iﬁ—g coad (5.6)
AP
1y = [a * P8 cosa) + DL pGJ<a>§—g coso (5.7)

Equation (5.2) may also be integrated from r>0 to r=Ri to yield the following
reault:
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G,rz
Ri

1
Einiz‘rzls cost + [p =p;)g coso J ar dr (5.8)
r

where (consistent with an assumption in section 3 it is assumed that the liquid
viscous stress in the core is negligible in comparison with the turbulent

Stress. Elimlnating [R1)m=ao (R1) in (3.4) by means of (5.1) and
Substituting for o gﬂrin (3. éi nd physically requiring that du /dr(O. it
follows that the tﬁ?&ulent gas shear stress may be written as:

d
2( pimr )2 ==8)?

- (5.9)

ay  (r) = ]2 PGk
G,rz'" c 1a T cfa

Substituting this equation into (3.1), the liquid phase turbulent shear stress
becomes:
0y pglr) = = 1, [5)% = clapkilns r]l L (5.10)
Lyrz i*R% GG

Substituting (3.10), (5.9) and (5.10) into (5.8) and rearranging the equation
results in the governing equation for the gas velocity profile in the core
region:

62 S P Y
Pyl G{Ri-r] r aoc ql ~u]] dr - ruuG[aF-] +-E;E[EE} r[n+C1q[1-u]] -
P 1(p.2 2 feo P 2 fR
3= AlR1%r®) - ity ~ 3(RE%r }°L3 cosd + (p ~p,)g coso ur dr =0 (5.11)

Before proceeding with the solution of (5.11) it 4is convenient to
transform it intec a nondimensional form. Towards this objective the following
variablea frequently used in single-phase turbulent flow are introduced:

ref=y , 6 = R ~ R (5.12)
u T
+* G ¥ wyl/2
upm e e () (5.13)
u
IY '6 IR
u ¥Yp u &p u Rp
Y- B 4. E. 3'a L (5.14)
u ! By

where Y is the distance from the tube wall and § is the continuous liquid layer
thickness. Eliminating the pressure gradient, 3P/9z, by means of (5.7) and
after some algebra and using (5.6) it can be shown that (5.11) reduces to
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This equation may alsc be written in the condensed form as follows:

+

+

du du

M= v ay(=2) s ay -0 (5.16)
34 dy

where the definition of A,, A, and A is clear by a reference to (5.15).
Physically we expect that ducf%Y 20, éhd since A,20 and Azzo. (5.16) can be
expressed as

A A A
—f . a L 2 L EPa AR (5.17)
dy 1 1 1
which may be solved numerically. In (5.15) or (5.17) the void fraction a is
determined from (3.28) and by assuming that alr)=a =constapt in the
intermediate and central core regions. At the tupe genterliﬁ% (Y =R ) it may be
shown ghat ﬁ1-n2-n3-o and that in the limit as Y +R : ﬁ2/A1-fin1te, A31A1‘0 and
duGIdY =0,

From (5.17) and given tube geometry and gas~liquid properties, the
solution of the‘nondtmensional gas velocity depends on the continuous liquid
rilm thickness 6 , turbulence properties C. and k., vold fraction distribution
a, and on the flow direction or cosé. The Eiquid %rnplet velocity distribution
in the core of an annular flow can be determined from the knowledge of a drag
law which enters into the momentum interaction term p. in (2.16) and (2.17).
Because at the present no reliable estimates of p f% the radial direction
exist, and consistent with the turbulence modeling €quation (3.1), it will be
assumed henceforth that in the core the mean liquid and gas velocities are the
same, i.e.

+

M, = U

L , a, <a>, cosh, fluid properties, tube geometry) (5.18)

+ P
o= ulse G kg

5.2 Velocity Distribution in the Continuous Liquid Layer Region

The veloecity distribution in the 1liquid film will be modeled by the
universal velocity profile of single-phase pipe flow, prinecipally because of
its simplicity and to a lesser degree because it gives credible results rfor the
global hydrodynamic flow parameters [2]. Hence

u' ey W38T s Ysetss (5.19)
2wt .Y ; Y oss5
we~3.05+5y ; s5<¢<y 55 530 (5.20)
We = 56" ang" ~ 8.058" + 12.51
son mx i ¥YEs
u' = =3,05 +5 my’ 5 <y s30 (5.21)

ot = 5.5 + 2.5 any' 30 <Y 53¢

Wy = 2.55 tng’ + 38 =~ 64

where =
" [5 + +
- dy
Hr Jou (5.22)

{s the nondimensional liquid film flow-rate.

5.3 Liquid and Gas Flow-Rates

The liquid film mass flow-rate, m,, and the liquid droplet mass flow-rate
in the core, m, are defined as follows:

§

[ +
m, = 21Rp, jcruL aY = 2mRu, Wy (5.23)
(R BE
m, = JOpL[1-a]uL21rr dr = 2nRu, 10{1~a]uh];: dr (5.24)

whereas the total liquid flow-rate is given by

+

i +
+ * 7T +
Mg =@t m = EHRHL[Hf + fol1~u]uh-ﬁ:-dr ] (5.25)
The gaa flow-rate, Moy is found from
Ri rﬁi+* e
m, = Jopuuuuawr dr = (1~ Bo]21rR|.|L Joauc-;:-dr (5.26)

‘and the liquid droplets entrainment ratio, e, is defined as follows:

me
B ——
[ (5.27)

An additional parameter that is useful for comparing the results with data is
the liquid droplets mass flux, defined by

*
G = ppu {1-a]u: (5.28)

5.4 Independent Parameters and Solution Procedure

The most common independent parameters in annular flow experiments are
::yprised of the liquid and gas mass flow-rates, m and m,, pressure gradient,
3z, tube geometry or pipe diameter D, and gpeciri ation of upflow or
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downflow. With these considerations in view, the following solution procedure
for the annular flow properties was adopted:

1. The fluid properties (p. s M s+ Ug)s tube diameter (D=2R), flow direction
(cos8), turbulence caerficfbnt (ké} Cfﬁ, and flow parameters (mLT’ m., aP/3z)
are assumed known.

2. Assume the film thickness é.

3. Assume the entrainment ratio e.

4. From (5.27), (5.25) and (5.23) obtain m_, m, and Wy.

5. Obtain &' from (5.19), (5.20) or (5.21).

6. Determine u* and t_ from (5.14) and (5.13).

7. Obtain the average void fraction from (5.6).

8. Solve for the interfacial shear stress from (5.7).

Yo o Tiiiv7z
2KGPLE CyPy,
10. Solve for the void fraction distribution from (3.28).

9, Determine A from (3.24), since o

11. Obtain gas and 1iquid velocities from (5.17) and (5.18).

12. Determine m

from (5.26) and m o from (5.25) and compare with given values
in atep 1.

G

13. If the predicted m, matches the given value move to the next step,
otherwise assume a new vaﬁus of e in step 3 and repeat calculations.

14. If the predicted m matches the given value the solution has been
completed, otherwise vary I in step 2 and repeat calculations.

15. Compute all other variables of interest, including the mean film thickness
& defined by

m

Gm = YIa-O.S (5.29)
16. Study the effects of turbulence parameters, tube geometry, fluid
properties, and flow orientation by repeating calculations from step 1.

The mean film thickness definition (5.29) is conasistent with the thickness
measured by a conductance probe when the probe is in contact with the gas phase
one half of the total time.

6. RESULTS AND DISCUSSION

In this section the model predictions will be compared with the
experimental data of air-water upflow and downflow in different diameter tubes.
Utilizing the experimental values of the pressure gradient and gas and total
1iquid flow=rates, Table 1 shows a comparison between the predicted wall shear

stress, continuous liquid film thickness, mean film thickness, liquid ilm
orest thickness, and liquid entrajinment ratio with the data of Ueda et al.
[23,24]) and Gill et al. [4,5]. The data in the table correspond te 0.1 MPa in a
28,8 mm diameter tube [23,24], and 0,15 MPa in a 31.8 mm dlameter tube [4,5].
The entrainment ratio 518 signifies the fraction of the total liquid flow in
the tube through the core of the tube with a diameter of 18,8 mm which is used
for the purpose of comparing the model's prediction with the data of [23,24].
The results were generated with k. =0.65 for the data of [23,24], with K .=0.6
for the data of [5], and with k. =0.45 for the data of [4]. In all ealeulaEions
it was assumed that C.=1, Thesé values of turbulence constants were found to
produce the best compaglann of theory with data of local droplet mass fluxes.

As shown in Table 1, the predicted wall shear stress, mean film thickness
and entrainment ratio e,, are in good accord with the experiment, with the wall
shear stress and mean flgm thickness being in error by about 20%. The predicted
and measured entrainment ratios agree within 16% of each other. The predicted
values of centinuous liquid film thickness and film crest thickness are not
very good which may be attributed to the poor prediction of the void fraction
distribution close to the liquid film interface as a result of the expliecit
neglect of the interfacial waves in the model.

The liquid droplets mass flux computed from (5.28) is compared with the
downflow data [23] in Fig. 8, and with the upflow data [24] in Fig. 9, for a
fixed value of the gas mass flow=-rate of 100 Kg/hr. Except close to the liquid
f{lm finterface where the validity of data is also doubtful, the comparison
between the predition and experiment is very reascnable., The model predicts a
local minimum close to the liquid film interface for all cases in Figs. 8 and 9
and this trend is in good accord with the data even at lower liquid mass fluxes
where the experimental trend does not appear to be olearly diacernable due to
the flattening of the liquid mass flux curves.

: Figures 10 and 11 illustrate the velooity and void fraction profiles for
Lthe situations in Figs, 8 and 9, respectively. Here, the compariscn with the
data is not possible, but the predicted trends agree well with the upflow data

of G111 et al. [5]. The veloelty decreases near the tube centerline and

increases near the film interface as the total liquid flow decreases at a Fixed

‘gas flow-rate, for both upflow and downflow situations. Figures 10 and 11 also

show that as the total liquid flow decreases at a fixed gas flow, the core void

fragtion increases and liquid film thickness decreases which is in accord with

the upflow data of Gill [5]. It should be noted that here there are no peaks of
the vold fraction close to the film interface because of the high core-averaged
vold fraction and high values of A/Ri as discussed in sectien 3. As the liquid
flowsrate is increased in Figs. 10 and 11 the velocity profiles seem to

Approach more the parabolic profiles, in conformity with data [5].

Figure 12 shows a comparison of the predicted results of the 1liquid

droplets mass fluxes with the upflow data of Gill et al. [5] at a fixed gas

mags flow-rate of 136 Kg/hr, whereas Fig. 13 deplets the predioted velocity and

Yold fraction profiles for the three different liquid flow-rates in Fig. 12.

The results in these figures were generated with the turbulence constants

kg0.6 and C e1. Although the predicted void fraction profile in the core

ares well with the exper iments in Fig. 1 3 for the situation of l'BI =227
I:g{hl L the pr edicted core VelOclty r i
- Pr of e latte its centerline salu&



Table 1. Comparison of the predicted flow parameters with the experimental data
o | mg [FE LEQ ox10%[6 x103|6 x10%| e,y
Z lm~s (m) m) m)
Kg/ | Ke/ <a> ] Flow | Ref
hr hr 535 Theo. |Theo. | Theory|Theory | Theory Dir.
m-5 |Exp. |Exp. Exp. Exp. Exp.
1080| 100| 670(5.564]0.734| 0.735| 0.736(0,0864[0.9975|0.1985
5.1 0.098| 0.850( 1,240]0.0860
600| 100| 450|3.796{0.550] 0.550| 0.550/0.0829]0.9986|0.1905
3,790]|0.098( 0.60 | 2,10 |0.0880 Down | [23]
240| 100| 280|2.379|0.353| 0.353| 0.353]|0.0609(0.9996]|0.1380
2.27 |0.082| 0.350| 1.HO |0.0630
1080| 100| 780|5.017[0.734] 0.735| 0.736|0.1073|0.9969|0.2463
4.0 - 0.850 o o~
[24]
300| 100| 490(3.347(0.234] 0,235( 0.235/0.2168|0,9982|0,4990
2.9 |0.070] 0.370| 2.10 -
340 136| 285]|1.924[0.311| 0.311]| 0.312]|0.1799(0,9978|0.5100
- - 0.381 - -
Up
227 136] 235|1.562|0.282| 0.282| 0.282|0.1643(0.9986)0. 4460 [5]
- - 0.300 - -
159| 136 202|1.350[0.234| 0.234| 0.235|0.1644]0.9990|0.U4580
- - 0.254 = —
4sd| 227 512|3.873[0.156| 0.156] 0.158|0.2781|0.,9972|0. 7724
= = 0.318 - - [u]
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ithe experimental values of the gas and liquid flow-rates, m

The comparison of the predicted local liquid mass flux, core velocity, and
vold fraction profiles with data of Gill et al. [4] is illustrated in Figs, 14
and 15 for the situation corresponding to the gas mass flow~rate of 227 Kg/hr.
Here, however, it was found that the best prediction of the data could be
achieved with the mixing length turbulence constant of 0.45. On the basis of
this rinding we found that k. may be correlated with the gas Reynolds number
Re. as illustrated in Fig. QB, with the best fit curve represented by the
fo?lowing equation:

K = - 0.29x10™° Re, + 0,84 (6.1)

where the superfieial gas Reynolds number is defined as:

pg<VD m

4 G
< G 1 (6.2)
G Vg T ough

All results in this paper were generated with C.=1; i.e., the 1iquid phase
turbulence is affected only by the gas phase turbulence. This assumption is, of
course, very restrictive and should not apply at low gas mass flow-rates or
high core liquid mass flow-rates, or when the droplets are larger than about 10
ym [19]). The evidence for this breakdown may also be seen in numerical
caleulations at low gas flow-rates where we experienced convergence
difficulties and found that they could be eliminated by adjusting the parameter
C, to a lower value. Lower values of C (C1<1) correspond to the liquid phase
turbulenceurluetuationa of lower ampliéude than the gas phase as may be seen
from (3.1) . At the present, however, detailed annular flow data are lacking to
establish the variations of k, and C, at low values of m_,, The turbulence
parameter k. does not appear Qo depend strongly on the liauid flow=rate at
higher gas Fluw-rates. as far as the present investigation has shown, and the
correlation (6.1) appears to be adequate.

Recent experimental studies [25] in a 31,8 mm tube with an air-water
upward flow clearly show that at fixed total liquid flow=rates the entrained
liquid flow becomes almost independent of the gas flow~rate at high values of
the gas rlow, and that the liquid film is stripped of its waves. Gill et al.
[5] also found that the gas core mixing length can be correlated with the gas
mass flow-rate, although their definition of this constant is considerably
different from the present model. The linear decrease of k with Re., as shown
in Fig. 16 appears to indicate that at higher gas fluxes tﬁe turbul%nt eddies
transport their energies over shorter distances, or that the turbulent flow is
More localized than at lower values of Re y probably due to the turbulent
energy dissipation of the gas phase in the Sroplets or because of the reduced

Wave activity process. Physically, this appears to be plausible, since at lower
8as flow=rates the effect of liquid film, or of the waves on the film, should

be to penetrate deeper into the core region and transport with them the gas

eddies over larger distances,

In comparing the model results with the experimental data use was made of
o and My and of
'_‘—l—__________

y
‘This may be interpreted that the droplets are large.
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the pressure gradlient, aP/3z. For a given tube geometry, flow orientation, and
fluid properties, only two of these variables are independent and a complete
annular flow model should be constructed to reflect this fact. We did not
pursue this approach at the outset for the reason to exclude the additional
correlating parameters from analysis which would have masked the basic
turbulence assumptions and, therefore, furnished us with a less uncertain range
of validlity of these assumptions.

T. SUMMARY AND CONCLUSIONS

An analysis of a turbulent two~phase core of an annular vertical flow was
presented for the purpose of determining the core void fraction distribution.
Modeling of the core turbulence characteristics was achieved by an assumption
which relates the liquid phase turbulence to the gas phase turbulence, and by
an assumption that the gas phase turbulence can be modeled by a mixing length
theory. The additional assumption of the quasi-isotropicity of the two-phase
high quality flow allowed the determination of the void fraction profiles in
different regions of the core. In vertical upflow, the void fraction exhibits a
peak close to the liquid film interface for some range of parameters, whereas
in a vertical downflow the peak in voild fraction is predicted at the pipe
centerline. Upward flows at high values of the average void fraction do not
appear to exhibit void fraction peaks close to the liquid film interface, as
contrasted with flows at low void fractiona. Larger interfacial shear at the
liquid film interface is shown to increase the gas phase concentration close to
the interface in both upflow and downflow and it alsc tends to produce larger
void fraction gradients and flattening of the core void fraction profile. The
results presented in the paper also compare well qualitatively with the upflow
and downflow data of bubbly flows and flows without the liquid film with a
denser phase dispersed in a lighter continuous phase.

Based on the experimental values of the pressure gradient, and gas and
liquid mass flow-rates, the model s able to predict well the average film
thickness, well shear stress, liquid entrajnment, and the detailed distribution
of the liquid mass flux and void fraction in the core. This prediction is found
to be more reasonable at higher values of the gas flow~rates where the mixing
length constant k_. appears to exhibit a near~linear behavior with the gas
flow=-rate, and where the turbulence parameter C,=1. At low values of m,, the
turbulence oonstants k., and C, deviate from constant values uhloﬁ was
attributed to the breakd%wn of the basic turbulence assumptions. The turbulent
flow structure of an annular two-phase flow is exceedingly complex due to the
presence of multiple turbulence length scales with more data required to
establish the most important scales for the use in constructing realistic flow
models.

NOMENCLATURE

Variables in (5.16)

Buoyancy number, 1-prp

Turbulence constant, de%ined by (3.1)

Tube diameter

Liquid droplets entrainment ratio, defined by (5.27)
Symmetric part of the velocity gradient of phase k
Isotropicity function, defined by (3.8)
Gravitational constant
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Mass flux

Unit tensor

Mixing length turbulence constant in (3.3)
Turbulence constant in (3.5)

Mixing length in (3.3)

Mixing length in (4.2)

Maas flow-rate

Parameter defined by (3.27)

Teo=~phase Grashof number, defined by (3.27)
variable defined by (A.6)

Momentum interaction, defined by (2.5)
Pressure

Ratio of densities, p, /p

Parameter defined by*kB-?)

Radial coordingte, u rpouL

Tube radiua, u Rp /uL

Gas Reynolds nnmbkr. defined by (6.2)
Interfacial radius defined in Fig. 1, u Rip /u
Time L
Averaging time interval

Stress tensor of phgse k, defined by (2.4)
Axial velocity, u/u

Shear velocity

Fluetuating velocity of phase k

Velocity of phase k

Superricial gas velocity

Nondimensional film flow rate,,defined by (5.22)
Distance from the tube wall, u YpL/uL

Axial coordinate

Gas volumetric fraection or vold fraction
Nondimensional distance, defingd by (3,34)
Parameter defined by (3.35), u 5PL/”L
Parameter defined by (3.24)

Virtual mass coeffiefent in (2.5)

Parameter defined by (3.26)

Angle of tube inclination

Viscosity coefficient in (2.4)

Viscosity coefficient in (2.H)

Viscosity of phase k

Nondimensional distance, defined by (3.23)
Drag coefficient in (2.5)

Density of phase k

Partial density of phase k, a, p

Turbulent stress tensor of phﬁs% 3

Viscous stress tensor of phase k
Interfacial shear stress, defined by (3.21)
Viscous shear stress, total stress
Fluctuating component of the volumetric fraction
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Pertains to the film crest

Pertains to the entrainment

Pertains to the liquid film

Pertains to the gas phase

Pertains to the liguid film interface
Tensor indices

Pertains to phase k, k=G,L

Pertains to the liquid phase

Liquid total

Mean value

Pertains to a conatant value in the core
Pertains to the tube wall

X e 0
(%

= |

£ o383

Special Symbols

<> Core=-averaged value
—T Time averaging operator, defined by (2.7)
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APPENDIX = Derivation of Equation (3.4)

In deriving (3.4) it is assumed that the addition of liquid droplets into
a turbulent gas produces an additive effect on the total core turbulence, since
the bubbly two-phase flow data [9,10] show that such an assumption is
reasonable, For the turbulent shear stress of the gas we may write:

du du
3 G, e
[r) = Bglioete] =% = (4.1)

g r

G,rz

where & =k_(Ri=r) is the mixing 1length (equation (3.3)) and & is a
charactepisgio turbulent length scale of the interfacial region of thé 1iquid
film, This length may be assumed to be proportional to the thickness of Region
I (see Fig, 1) or to an amplitude of interfacial waves. Comparing (A.1) and
(3.2) shows that

du du du
g Mg W o gy
og,r1l") = 0% gl 7 = = rets (57 (A.2)

since ye expe that du./dr<0. Uaéng tge notation of ﬂéﬁé*?iugjnéfqr'

gﬁa“é;fm;ﬁaﬁéfﬁg %oué;::f;?}i and ug-d qudr we can differenti wice
ut
%,Rs ™ %%,R1 a7 (K.3)
OBni = T (0, 5g)% + olugr (A1)
G,Ri EEE:;; G,R1 G '

where °[“é"l denotes terms containing the third and higher order derivatives
of the velocity profile. Expanding also o Ri[r] in a Taylor series about
% Rl[Ri} results in 4

1]

;
°G.Rilr] " aclnl[ni] + oé'ni(r-nlj + §ua.ﬂi[rﬁﬂi]z + °[°"6,n1] (A.5)

Ignoring the third and higher order effects of the velocity profile in (A.4)
and third and higher order terms in (A.5) it is possible to combine these two
equations to obtain a differential equation for

Op nelr)
G, Ri
P' - (Aaé)"
9,rs B B
l.e.
P == gy 1 £9772] (A.T)

Noting that 1>p>0 and p'>0, since away from the liquid film interface % Rl[r)
L

gh
pa

2

pl - -—"—ﬁl__r

and can be integrated from r=Ri where p=1 to Ri>r>0. The result is

r
p=lz

]2
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ould not contribute substantially to the turbulence in the core, the physical
rt of (A.T) becomes

(A.8)

(r.9)



